A375854 Triangle read by rows: T(n, k) = 2^k * hypergeom([-n, -k], [], 1/2).
1, 1, 3, 1, 4, 14, 1, 5, 22, 86, 1, 6, 32, 152, 648, 1, 7, 44, 248, 1256, 5752, 1, 8, 58, 380, 2248, 12032, 58576, 1, 9, 74, 554, 3768, 23272, 130768, 671568, 1, 10, 92, 776, 5984, 42112, 270400, 1586944, 8546432, 1, 11, 112, 1052, 9088, 72032, 523072, 3479744, 21241984, 119401856
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1, 3; [2] 1, 4, 14; [3] 1, 5, 22, 86; [4] 1, 6, 32, 152, 648; [5] 1, 7, 44, 248, 1256, 5752; [6] 1, 8, 58, 380, 2248, 12032, 58576; [7] 1, 9, 74, 554, 3768, 23272, 130768, 671568; [8] 1, 10, 92, 776, 5984, 42112, 270400, 1586944, 8546432; [9] 1, 11, 112, 1052, 9088, 72032, 523072, 3479744, 21241984, 119401856; ...
Programs
-
Maple
T := (n, k) -> 2^k * hypergeom([-n, -k], [], 1/2): for n from 0 to 9 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Sep 02 2024
-
Mathematica
T[n_, k_] := Sum[2^(k - j)*Binomial[n, j]*Binomial[k, j]*j!, {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
-
Python
from math import isqrt, comb, factorial def A375854(n): a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)) b = n-comb(a+1,2) return sum(comb(a,j)*comb(b,j)*factorial(j)<
Chai Wah Wu, Nov 13 2024
Formula
T(n, k) = Sum_{j=0..k} 2^(k - j)*binomial(n, j)*binomial(k, j)*j!.