cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375854 Triangle read by rows: T(n, k) = 2^k * hypergeom([-n, -k], [], 1/2).

Original entry on oeis.org

1, 1, 3, 1, 4, 14, 1, 5, 22, 86, 1, 6, 32, 152, 648, 1, 7, 44, 248, 1256, 5752, 1, 8, 58, 380, 2248, 12032, 58576, 1, 9, 74, 554, 3768, 23272, 130768, 671568, 1, 10, 92, 776, 5984, 42112, 270400, 1586944, 8546432, 1, 11, 112, 1052, 9088, 72032, 523072, 3479744, 21241984, 119401856
Offset: 0

Views

Author

Detlef Meya, Aug 31 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1, 3;
[2] 1, 4, 14;
[3] 1, 5, 22, 86;
[4] 1, 6, 32, 152, 648;
[5] 1, 7, 44, 248, 1256, 5752;
[6] 1, 8, 58, 380, 2248, 12032, 58576;
[7] 1, 9, 74, 554, 3768, 23272, 130768, 671568;
[8] 1, 10, 92, 776, 5984, 42112, 270400, 1586944, 8546432;
[9] 1, 11, 112, 1052, 9088, 72032, 523072, 3479744, 21241984, 119401856;
...
		

Crossrefs

Cf. A375855, A000012, A087912 (main diagonal).

Programs

  • Maple
    T := (n, k) -> 2^k * hypergeom([-n, -k], [], 1/2):
    for n from 0 to 9 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Sep 02 2024
  • Mathematica
    T[n_, k_] := Sum[2^(k - j)*Binomial[n, j]*Binomial[k, j]*j!, {j, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
  • Python
    from math import isqrt, comb, factorial
    def A375854(n):
        a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
        b = n-comb(a+1,2)
        return sum(comb(a,j)*comb(b,j)*factorial(j)<Chai Wah Wu, Nov 13 2024

Formula

T(n, k) = Sum_{j=0..k} 2^(k - j)*binomial(n, j)*binomial(k, j)*j!.