cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375897 E.g.f. satisfies A(x) = 1 / (2 - exp(x * A(x)^(1/2)))^2.

Original entry on oeis.org

1, 2, 12, 122, 1780, 34082, 810740, 23093562, 767175972, 29140904402, 1246366394548, 59292772664666, 3106206974812292, 177715679350850370, 11026719500616041076, 737552919428497318394, 52907911316906095281508, 4051998061642112552244722
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2/(n+2)! * Sum[(n + k + 1)!*StirlingS2[n, k], {k, 0, n} ], {n, 0, 20}] (* Vaclav Kotesovec, Aug 27 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(2-exp(x)))/x)^2))
    
  • PARI
    a(n) = 2*sum(k=0, n, (n+k+1)!*stirling(n, k, 2))/(n+2)!;

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052894.
E.g.f.: A(x) = ( (1/x) * Series_Reversion(x * (2 - exp(x))) )^2.
a(n) = (2/(n+2)!) * Sum_{k=0..n} (n+k+1)! * Stirling2(n,k).
a(n) ~ LambertW(2*exp(1))^(n+2) * n^(n-1) / (2^(n+1) * exp(n) * sqrt(LambertW(2*exp(1)) + 1) * (LambertW(2*exp(1)) - 1)^(2*n+2)). - Vaclav Kotesovec, Aug 27 2025

A375903 E.g.f. satisfies A(x) = (2 - exp(x * A(x)^(1/3)))^3.

Original entry on oeis.org

1, -3, 9, -18, -57, 942, -4299, -33078, 786267, -4357818, -84919647, 2153185746, -9754462833, -539983739298, 13389257569005, -13826647549926, -6661768436593725, 153336015047780790, 938088731006163417, -139051687661849130654, 2787586449012275332023
Offset: 0

Views

Author

Seiichi Manyama, Sep 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((serreverse(x/(2-exp(x)))/x)^3))
    
  • PARI
    a(n) = 3*(n+2)!*sum(k=0, n, (-1)^k*stirling(n, k, 2)/(n-k+3)!);

Formula

E.g.f.: A(x) = ( (1/x) * Series_Reversion(x / (2 - exp(x))) )^3.
a(n) = 3 * (n+2)! * Sum_{k=0..n} (-1)^k * Stirling2(n,k)/(n-k+3)!.
Showing 1-2 of 2 results.