cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375908 Sphenic numbers that are sandwiched between products of exactly 4 distinct primes (or tetraprimes).

Original entry on oeis.org

18446, 39766, 74306, 83434, 94106, 100346, 107966, 111154, 111814, 113366, 140834, 144754, 145606, 146014, 147406, 149854, 154946, 155702, 156146, 165346, 171786, 189034, 190618, 191806, 197354, 201686, 203314, 206194, 211394, 211946, 219386, 231286, 234394, 253114, 258266, 262294, 263966
Offset: 1

Views

Author

Massimo Kofler, Sep 02 2024

Keywords

Comments

Terms are of the form 4*k+2.

Examples

			18446 = 2 * 23 * 401  (between 18445 = 5*7*17*31 and 18447 = 3*11*13*43).
39766 = 2 * 59 * 337  (between 39765 = 3*5*11*241 and 39767 = 7*13*19*23).
74306 = 2 * 53 * 701  (between 74305 = 5*7*11*193 and 74307 = 3*17*31*47).
		

Crossrefs

Cf. A007304, A046386. Subsequence of A075819.

Programs

  • Maple
    N:= 5*10^5: # for terms <= N
    P:= select(isprime,[seq(i,i=3..N/3,2)]): nP:= nops(P):
    R:= NULL:
    for i from 1 to nP while 2*P[i]*P[i+1] <= N do
      for j from i+1 to nP do
        x:= 2*P[i]*P[j];
        if x > N then break fi;
        if numtheory:-bigomega(x-1) = 4 and numtheory:-bigomega(x+1) = 4 and
          numtheory:-issqrfree(x-1) and numtheory:-issqrfree(x+1) then
            R:= R,x
        fi
    od od:
    sort([R]); # Robert Israel, Sep 02 2024
  • Mathematica
    e[n_] := FactorInteger[n][[;; , 2]]; SequencePosition[e /@ Range[300000], {{1, 1, 1, 1}, {1, 1, 1}, {1, 1, 1, 1}}][[;; , 1]] + 1 (* Amiram Eldar, Sep 02 2024 *)