A375908 Sphenic numbers that are sandwiched between products of exactly 4 distinct primes (or tetraprimes).
18446, 39766, 74306, 83434, 94106, 100346, 107966, 111154, 111814, 113366, 140834, 144754, 145606, 146014, 147406, 149854, 154946, 155702, 156146, 165346, 171786, 189034, 190618, 191806, 197354, 201686, 203314, 206194, 211394, 211946, 219386, 231286, 234394, 253114, 258266, 262294, 263966
Offset: 1
Keywords
Examples
18446 = 2 * 23 * 401 (between 18445 = 5*7*17*31 and 18447 = 3*11*13*43). 39766 = 2 * 59 * 337 (between 39765 = 3*5*11*241 and 39767 = 7*13*19*23). 74306 = 2 * 53 * 701 (between 74305 = 5*7*11*193 and 74307 = 3*17*31*47).
Programs
-
Maple
N:= 5*10^5: # for terms <= N P:= select(isprime,[seq(i,i=3..N/3,2)]): nP:= nops(P): R:= NULL: for i from 1 to nP while 2*P[i]*P[i+1] <= N do for j from i+1 to nP do x:= 2*P[i]*P[j]; if x > N then break fi; if numtheory:-bigomega(x-1) = 4 and numtheory:-bigomega(x+1) = 4 and numtheory:-issqrfree(x-1) and numtheory:-issqrfree(x+1) then R:= R,x fi od od: sort([R]); # Robert Israel, Sep 02 2024
-
Mathematica
e[n_] := FactorInteger[n][[;; , 2]]; SequencePosition[e /@ Range[300000], {{1, 1, 1, 1}, {1, 1, 1}, {1, 1, 1, 1}}][[;; , 1]] + 1 (* Amiram Eldar, Sep 02 2024 *)
Comments