A375912 Primes p such that p*nextprime(p)+1 and p + nextprime(p)+1 are both perfect squares where nextprime(p) is the smallest prime that is larger than p.
3, 11, 59, 179, 311, 419, 2111, 3119, 5099, 21011, 21839, 24419, 30011, 37811, 41759, 44699, 60899, 68819, 83639, 86111, 100799, 135719, 143111, 161879, 163019, 165311, 177011, 210599, 218459, 241511, 273059, 304979, 312839, 437111, 450299, 491039, 584279, 595139, 603899, 637319
Offset: 1
Keywords
Examples
11 is a term because 11*nextprime(11)+1 = 12^2 and 11 + nextprime(11)+1 = 5^2.
Programs
-
Maple
nn:=10^5: for n from 1 to nn do: p:=ithprime(n):q:=nextprime(p):p1:=sqrt(p*q+1):p2:=sqrt(q+p+1): if floor(p1) = p1 and floor(p2)=p2 then printf(`%d, `,p): else fi: od:
-
Mathematica
Select[Partition[Prime[Range[100000]], 2, 1], IntegerQ[Sqrt[#[[1]] + #[[2]] + 1]] && IntegerQ[Sqrt[#[[1]]*#[[2]] + 1]] &][[;; , 1]] (* Amiram Eldar, Sep 02 2024 *)