A375915 Composite numbers k == 1, 9 (mod 10) such that 5^((k-1)/2) == 1 (mod k).
781, 1541, 1729, 5461, 5611, 6601, 7449, 11041, 12801, 13021, 14981, 15751, 15841, 21361, 24211, 25351, 29539, 38081, 40501, 41041, 44801, 47641, 53971, 67921, 75361, 79381, 90241, 100651, 102311, 104721, 106201, 106561, 112141, 113201, 115921, 133141, 135201, 141361
Offset: 1
Keywords
Examples
29539 is a term because 29539 = 109*271 is composite, 29539 == 9 (mod 10), and 5^((29539-1)/2) == 1 (mod 29539).
Links
- Jianing Song, Table of n, a(n) for n = 1..1000
Crossrefs
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
Programs
-
PARI
isA375915(k) = (k>1) && !isprime(k) && (k%10==1 || k%10==9) && Mod(5,k)^((k-1)/2) == 1
Comments