A375918 Composite numbers k == 5, 7 (mod 12) such that 3^((k-1)/2) == -1 (mod k).
703, 1891, 3281, 8911, 12403, 16531, 44287, 63139, 79003, 97567, 105163, 152551, 182527, 188191, 211411, 218791, 288163, 313447, 320167, 364231, 385003, 432821, 453259, 497503, 563347, 638731, 655051, 658711, 801139, 859951, 867043, 973241, 994507, 1024651, 1097227
Offset: 1
Keywords
Examples
3281 is a term because 3281 = 17*193 is composite, 3281 == 5 (mod 12), and 3^((3281-1)/2) == -1 (mod 3281).
Links
- Jianing Song, Table of n, a(n) for n = 1..1000
Crossrefs
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
(union of all three) | | | |
Programs
-
PARI
isA375918(k) = !isprime(k) && (k%12==5 || k%12==7) && Mod(3,k)^((k-1)/2) == -1
Comments