cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375918 Composite numbers k == 5, 7 (mod 12) such that 3^((k-1)/2) == -1 (mod k).

Original entry on oeis.org

703, 1891, 3281, 8911, 12403, 16531, 44287, 63139, 79003, 97567, 105163, 152551, 182527, 188191, 211411, 218791, 288163, 313447, 320167, 364231, 385003, 432821, 453259, 497503, 563347, 638731, 655051, 658711, 801139, 859951, 867043, 973241, 994507, 1024651, 1097227
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 3^((k-1)/2) == (3/k) = -1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol).

Examples

			3281 is a term because 3281 = 17*193 is composite, 3281 == 5 (mod 12), and 3^((3281-1)/2) == -1 (mod 3281).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | this seq | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375918(k) = !isprime(k) && (k%12==5 || k%12==7) && Mod(3,k)^((k-1)/2) == -1