A375972 a(n) = binomial(n,k(n)), where k(2) = 1, k(n) = k(n-1) + (a(n-1) mod 2).
2, 3, 6, 10, 15, 35, 70, 126, 210, 330, 495, 1287, 3003, 6435, 12870, 24310, 43758, 75582, 125970, 203490, 319770, 490314, 735471, 2042975, 5311735, 13037895, 30421755, 67863915, 145422675, 300540195, 601080390, 1166803110, 2203961430, 4059928950, 7307872110, 12875774670, 22239974430
Offset: 2
Keywords
Examples
a(3) = 3, and k(3) = 1. To derive a(4), we first find that k(4) = k(3) + (a(3) mod 2) = 1 + (3 mod 2) = 2. Therefore a(4) = binomial(4,k(4)) = binomial(4,2) = 6.
Links
- Robert Israel, Table of n, a(n) for n = 2..3418
Programs
-
Maple
k[2]:= 1: for n from 2 to 50 do a[n]:= binomial(n, k[n]); k[n+1]:= k[n] + (a[n] mod 2); od: seq(a[n],n=2..50); # Robert Israel, Jan 27 2025
-
Mathematica
Module[{k}, FoldList[{Binomial[#2, k = #[[2]] + Mod[#[[1]], 2]], k} &, {2, 1}, Range[3, 50]][[All, 1]]] (* Paolo Xausa, Jan 28 2025 *)
-
PARI
lista(nn) = my(va=vector(nn), vk=vector(nn)); vk[2] = 1; va[2] = binomial(2, vk[2]); for (n=3, nn, vk[n] = vk[n-1] + va[n-1] % 2; va[n] = binomial(n, vk[n]);); vector(nn-1, k, va[k+1]); \\ Michel Marcus, Sep 27 2024
-
Python
def genNextRow(arr): nextRow = [] nextRow.append(arr[0]) for i in range(1, len(arr)): nextRow.append(arr[i-1]+arr[i]) nextRow.append(arr[len(arr)-1]) return nextRow pascal = [[1],[1,1]] n = 0 index = 1 while n < 30: pascal.append(genNextRow(pascal[1])) pascal.pop(0) print(pascal[1][index]) index = index + (pascal[1][index] % 2) n += 1
Extensions
More terms from Michel Marcus, Sep 30 2024
Comments