cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375989 Expansion of e.g.f. (1 + 3 * log(1 - x))^(5/3).

Original entry on oeis.org

1, -5, 5, 30, 180, 1410, 14790, 203880, 3559560, 75659760, 1893764160, 54430097760, 1763357958000, 63501756552720, 2514747808468080, 108572621062573440, 5074353268651935360, 255201626973301102080, 13740802156877800538880, 788580746923723472839680
Offset: 0

Views

Author

Seiichi Manyama, Sep 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 3*j-5)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (3*j-5)) * |Stirling1(n,k)|.

A375992 Expansion of e.g.f. (4 - 3 * exp(x))^(4/3).

Original entry on oeis.org

1, -4, 0, 16, 112, 976, 11760, 184656, 3566192, 81556176, 2152839920, 64389871696, 2151410517872, 79406805184976, 3208188040810480, 140812644820877136, 6671575179144279152, 339348322285418119376, 18443287953728909235440, 1066619199816333440144976
Offset: 0

Views

Author

Seiichi Manyama, Sep 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 3*j-4)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (3*j-4)) * Stirling2(n,k).
Showing 1-2 of 2 results.