A376004 Limiting matrix {m_n}, where m_0 = 1 and m_{i+1} = [[m_i, A(m_i)], [B(m_i), C(m_i)]], read by antidiagonals, and A adds the corresponding x-coords to every element, B subtracts it, and C adds the corresponding y-coords.
1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 1, 2, 1, 1, 2, 0, 1, 3, 2, 1, 2, -1, 0, 1, 5, 3, 1, 1, -1, -1, -1, 1, 1, 5, 3, 1, 1, -1, -1, -1, 1, 2, 1, 4, 4, 1, 2, -2, 0, 0, 1, 3, 2, 1, 5, 1, 2, 3, -1, -1, 0, 1, 5, 3, 1, 1, 2, 2, 2, 4, -1, -1, -1, 1, 5, 5, 3, 1, 1, 3, 3, 3, -3, -1, -1, -1, 1
Offset: 1
Examples
M_0 = [1] by definition. Constructing M_1 goes as follows: A(M_0) = M_0 + [0] = [1] B(M_0) = M_0 - [0] = [1] C(M_0) = M_0 + [0] = [1] So we have: | 1 1 | M_1 = | 1 1 | From this M_2 can be constructed: A(M_2) = M_1+[[0, 1],[0, 1]] = [[1, 2], [1, 2]] B(M_2) = M_1-[[0, 1],[0, 1]] = [[1, 0], [1, 0]] C(M_2) = M_1+[[0, 0],[1, 1]] = [[1, 1], [2, 2]] | 1 1 1 2 | | 1 1 1 2 | M_2 = | 1 0 1 1 | | 1 0 2 2 |
Links
- Bryle Morga, Table of n, a(n) for n = 1..10000
- Bryle Morga, Visualization of the first 2 million terms.
Programs
-
Python
def expand(m): i = len(m) res = [[0 for in range(2*i)] for in range(2*i)] for x in range(i): for y in range(i): res[y][x] = m[y][x] res[y][x+i] = m[y][x] + x res[y+i][x] = m[y][x] - x res[y+i][x+i] = m[y][x] + y return res a = [] m = [[1]] for _ in range(11): m = expand(m) for i in range(len(m)): for j in range(i+1): a.append(m[j][i-j])
Comments