cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A376036 E.g.f. satisfies A(x) = (exp(x / (1 - A(x))^3) - 1) / (1 - A(x)).

Original entry on oeis.org

0, 1, 9, 190, 6435, 301126, 18007161, 1311752590, 112703870439, 11158543451926, 1250964512674533, 156642117419304958, 21668625406445359227, 3281750147124057118966, 540094007004476783547825, 95975344500184607391266734, 18314947854834472094038237647
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (3*n+2*k-2)!/(3*n+k-1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=1..n} (3*n+2*k-2)!/(3*n+k-1)! * Stirling2(n,k).
E.g.f.: Series_Reversion( (1 - x)^3 * log(1 + x * (1 - x)) ).

A376034 E.g.f. satisfies A(x) = (exp(x / (1 - A(x))^3) - 1) * (1 - A(x))^2.

Original entry on oeis.org

0, 1, 3, 28, 429, 9136, 249315, 8300692, 326261649, 14786485336, 759129218367, 43543567874764, 2759873588979045, 191549117617410736, 14448371199973057659, 1176874833493589697604, 102951969888432809238585, 9626512744249673928398920
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (3*n-k-2)!/(3*n-2*k-1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=1..n} (3*n-k-2)!/(3*n-2*k-1)! * Stirling2(n,k).
E.g.f.: Series_Reversion( (1 - x)^3 * log(1 + x / (1 - x)^2) ).
Showing 1-2 of 2 results.