cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376072 a(n) are half the sums of the gamma coefficients of the n-th row-generating function of triangle A375853.

Original entry on oeis.org

1, 4, 18, 68, 251, 888, 3076, 10456, 35061, 116252, 381974, 1245564, 4035631, 13003696, 41701512, 133175792, 423741161, 1343864820, 4249518490, 13402327540, 42168298851, 132388845224, 414818381708, 1297410683208, 4051098663901, 12629895834508, 39319487031966, 122247859681196
Offset: 2

Views

Author

Mingjian Ding, Sep 08 2024

Keywords

Examples

			For n = 4, the row-generating function of triangle A375853(n, k) is 20*x + 56*x^2 + 20*x^3. Thus the corresponding gamma polynomial is 20*x + 16*x^2, and so a(4) = 18.
		

Crossrefs

Cf. A375853.

Programs

  • Maple
    a := n -> (3^n*(2*n - 1) + (-1)^n*(2*n + 1))/32:
    seq(a(n), n = 2..19);  # Peter Luschny, Sep 23 2024
  • Mathematica
    LinearRecurrence[{4,2,-12,-9},{1,4,18,68},30]

Formula

a(n) = 2^(n-1)*T_n((-1 + sqrt(3)*i)/2)/(1 + sqrt(3)*i)^n, where T_n(x) is the generating function of the n-th row of A375853.
a(n) = a(n - 1) + n*(3^(n-1) + (-1)^n)/8, a(2) = 1.
a(n) = ((2*n - 2)*a(n - 1) + 3*n*a(n - 2))/(n - 2), a(2) = 1, a(3) = 4.
a(n) = ((2*n - 1)*3^n + (2*n + 1)*(-1)^n)/32.
G.f.: x^2/(1 - 2*x - 3*x^2)^2.
E.g.f.: exp(x)*(2*x*cosh(2*x) - (1 - 4*x)*sinh(2*x))/16. - Stefano Spezia, Sep 23 2024