A376072 a(n) are half the sums of the gamma coefficients of the n-th row-generating function of triangle A375853.
1, 4, 18, 68, 251, 888, 3076, 10456, 35061, 116252, 381974, 1245564, 4035631, 13003696, 41701512, 133175792, 423741161, 1343864820, 4249518490, 13402327540, 42168298851, 132388845224, 414818381708, 1297410683208, 4051098663901, 12629895834508, 39319487031966, 122247859681196
Offset: 2
Examples
For n = 4, the row-generating function of triangle A375853(n, k) is 20*x + 56*x^2 + 20*x^3. Thus the corresponding gamma polynomial is 20*x + 16*x^2, and so a(4) = 18.
Links
- Ming-Jian Ding and Jiang Zeng, Some new results on minuscule polynomial of type A, arXiv:2308.16782, [math.CO], 2023.
- Index entries for linear recurrences with constant coefficients, signature (4,2,-12,-9).
Crossrefs
Cf. A375853.
Programs
-
Maple
a := n -> (3^n*(2*n - 1) + (-1)^n*(2*n + 1))/32: seq(a(n), n = 2..19); # Peter Luschny, Sep 23 2024
-
Mathematica
LinearRecurrence[{4,2,-12,-9},{1,4,18,68},30]
Formula
a(n) = 2^(n-1)*T_n((-1 + sqrt(3)*i)/2)/(1 + sqrt(3)*i)^n, where T_n(x) is the generating function of the n-th row of A375853.
a(n) = a(n - 1) + n*(3^(n-1) + (-1)^n)/8, a(2) = 1.
a(n) = ((2*n - 2)*a(n - 1) + 3*n*a(n - 2))/(n - 2), a(2) = 1, a(3) = 4.
a(n) = ((2*n - 1)*3^n + (2*n + 1)*(-1)^n)/32.
G.f.: x^2/(1 - 2*x - 3*x^2)^2.
E.g.f.: exp(x)*(2*x*cosh(2*x) - (1 - 4*x)*sinh(2*x))/16. - Stefano Spezia, Sep 23 2024