cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376077 Number of partitions of subsets of [n] containing n > 0, where consecutive integers are required to be in different parts.

Original entry on oeis.org

1, 1, 2, 6, 19, 68, 269, 1168, 5516, 28117, 153668, 895345, 5534292, 36137736, 248364343, 1790801964, 13508326353, 106329846806, 871423555238, 7420685528453, 65539734707912, 599363070599885, 5666859173305898, 55317197561841526, 556788566486730535
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2024

Keywords

Examples

			a(3) = 6: 3, 13, 1|3, 2|3, 13|2, 1|2|3.
		

Crossrefs

Cf. A000045, A000110, A261041 (partial sums).

Programs

  • Maple
    b:= proc(n, m, i) option remember; `if`(n=0, 1, add(
         `if`(i=j and j>0, 0, b(n-1, max(m, j), j)), j=0..m+1))
        end:
    a:= n-> b(n, 0$2)-`if`(n>0, b(n-1, 0$2), 0):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, m_, i_] := b[n, m, i] = If[n == 0, 1, Sum[If[i == j && j > 0, 0, b[n-1, Max[m, j], j]], {j, 0, m+1}]];
    a[n_] := b[n, 0, 0] - If[n > 0, b[n-1, 0, 0], 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 18 2024, after Alois P. Heinz *)

Formula

a(0) = 1, a(n) = A261041(n) - A261041(n-1) for n>=1.
G.f.: Sum_{j>=0} A000110(j) * (x/(1-x^2))^j.