A376085 a(0..5) = 1 and a(n) = 1 - a(n-1) - a(n-2) + a(n-1)*a(n-2)*a(n-3)/a(n-4) + a(n-2)*a(n-3)*a(n-4)/a(n-5) + a(n-3)*a(n-4)*a(n-5)/a(n-6), for n > 5.
1, 1, 1, 1, 1, 1, 2, 2, 4, 17, 68, 2312, 668169, 6179226912, 140378107463180352, 250687119058419133437352005889, 325446213917387462112884613611747886778483963398144, 1853431255195849256571682148793108515162996950284389365029788837512893363822697947303936
Offset: 0
Keywords
Crossrefs
Cf. A051786.
Programs
-
PARI
a(n) = if( n<0, n = 6-n); if( n<6, 1, 1-a(n-1)-a(n-2)+a(n-1)*a(n-2)*a(n-3)/a(n-4)+a(n-2)*a(n-3)*a(n-4)/a(n-5)+a(n-3)*a(n-4)*a(n-5)/a(n-6))
Formula
a(n) = 1 - a(n-1) - a(n-2) + (a(n-5)^2*a(n-4)^2*a(n-3) + a(n-6)*a(n-4)^2*a(n-3)*a(n-2) + a(n-6)*a(n-5)*a(n-3)*a(n-2)*a(n-1))/(a(n-6)*a(n-5)*a(n-4)).
a(3*n) divides a(3*n+1) and a(3*n+2) too.
a(3*n-1)*a(3*n) divides a(3*n+1) and a(3*n+2).
if the prime p divides a(3*n+1) or a(3*n+2), then it will also divide a(3*n-1)*a(3*n), new prime factors appear the first time in a(3*n) only.
Comments