cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376092 10^n-th powerful number.

Original entry on oeis.org

1, 49, 3136, 253472, 23002083, 2200079025, 215523459072, 21348015504200, 2125390162618116, 212104218976916644, 21190268970925690248, 2118092209873957381248, 211765852717674823741924, 21174572668805230623003225, 2117363857447354911021280900
Offset: 0

Views

Author

Chai Wah Wu, Sep 09 2024

Keywords

Crossrefs

Programs

  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A376092(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        m = 10**n
        def f(x):
            c, l = m+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l
            return c
        return bisection(f,m,m)

Formula

a(n) = A001694(10^n).
Limit_{n->oo} a(n)/10^(2n) = (zeta(3)/zeta(3/2))^2 = 0.21172829478335...