A376092 10^n-th powerful number.
1, 49, 3136, 253472, 23002083, 2200079025, 215523459072, 21348015504200, 2125390162618116, 212104218976916644, 21190268970925690248, 2118092209873957381248, 211765852717674823741924, 21174572668805230623003225, 2117363857447354911021280900
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..16
Programs
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A376092(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f, kmin=0, kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax m = 10**n def f(x): c, l = m+x, 0 j = isqrt(x) while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) c -= squarefreepi(integer_nthroot(x,3)[0])-l return c return bisection(f,m,m)
Formula
a(n) = A001694(10^n).
Limit_{n->oo} a(n)/10^(2n) = (zeta(3)/zeta(3/2))^2 = 0.21172829478335...