cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A376099 Expansion of e.g.f. -LambertW(-3*x / (1 - x))/3.

Original entry on oeis.org

0, 1, 8, 123, 2940, 96465, 4035438, 205395687, 12320780328, 851216818977, 66565617543450, 5812559883272439, 560602050420898764, 59186681025383491281, 6789351417468526481526, 840843424588323640992615, 111820607202879512913388752, 15892724010727366554445999425
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-3*x/(1-x))/3)))
    
  • PARI
    a(n) = n!*sum(k=1, n, (3*k)^(k-1)*binomial(n-1, k-1)/k!);

Formula

E.g.f. A(x) satisfies A(x) = x * (A(x) + exp(3*A(x))).
E.g.f.: Series_Reversion( x / (x + exp(3*x)) ).
a(n) = n! * Sum_{k=1..n} (3*k)^(k-1) * binomial(n-1,k-1)/k!.
a(n) ~ (3 + exp(-1))^(n + 1/2) * n^(n-1) / 3^(3/2). - Vaclav Kotesovec, Sep 10 2024

A376104 Expansion of e.g.f. -LambertW(-2*x / (1 + x))/2.

Original entry on oeis.org

0, 1, 2, 18, 200, 3240, 65712, 1626352, 47357312, 1587917952, 60244640000, 2551693841664, 119354176490496, 6110496488651776, 339867366232131584, 20407634663085066240, 1315738882989816578048, 90655729379062051799040, 6647791273573299221495808
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-2*x/(1+x))/2)))
    
  • PARI
    a(n) = n!*sum(k=1, n, (-1)^(n-k)*(2*k)^(k-1)*binomial(n-1, k-1)/k!);

Formula

E.g.f. A(x) satisfies A(x) = x * (-A(x) + exp(2*A(x))).
E.g.f.: Series_Reversion( x / (-x + exp(2*x)) ).
a(n) = n! * Sum_{k=1..n} (-1)^(n-k) * (2*k)^(k-1) * binomial(n-1,k-1)/k!.
a(n) ~ (2-exp(-1))^(n + 1/2) * n^(n-1) / 2^(3/2). - Vaclav Kotesovec, Sep 11 2024
Showing 1-2 of 2 results.