A376102 Array read by ascending antidiagonals: A(n,k) = k*2^(n+1) + 1.
1, 1, 3, 1, 5, 5, 1, 9, 9, 7, 1, 17, 17, 13, 9, 1, 33, 33, 25, 17, 11, 1, 65, 65, 49, 33, 21, 13, 1, 129, 129, 97, 65, 41, 25, 15, 1, 257, 257, 193, 129, 81, 49, 29, 17, 1, 513, 513, 385, 257, 161, 97, 57, 33, 19, 1, 1025, 1025, 769, 513, 321, 193, 113, 65, 37, 21
Offset: 0
Examples
The array begins as: 1, 3, 5, 7, 9, 11, 13, ... 1, 5, 9, 13, 17, 21, 25, ... 1, 9, 17, 25, 33, 41, 49, ... 1, 17, 33, 49, 65, 81, 97, ... 1, 33, 65, 97, 129, 161, 193, ... 1, 65, 129, 193, 257, 321, 385, ... 1, 129, 257, 385, 513, 641, 769, ... ...
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 70-71, 237-242.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 136.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987.
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=k*2^(n+1)+1; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
Comments