cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376102 Array read by ascending antidiagonals: A(n,k) = k*2^(n+1) + 1.

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 9, 9, 7, 1, 17, 17, 13, 9, 1, 33, 33, 25, 17, 11, 1, 65, 65, 49, 33, 21, 13, 1, 129, 129, 97, 65, 41, 25, 15, 1, 257, 257, 193, 129, 81, 49, 29, 17, 1, 513, 513, 385, 257, 161, 97, 57, 33, 19, 1, 1025, 1025, 769, 513, 321, 193, 113, 65, 37, 21
Offset: 0

Views

Author

Stefano Spezia, Sep 14 2024

Keywords

Comments

In 1747, Euler showed that any factor of a Fermat number A000215(n) is of the form k*2^(n+1) + 1. See Wells at p. 148.

Examples

			The array begins as:
  1,   3,   5,   7,   9,  11,  13, ...
  1,   5,   9,  13,  17,  21,  25, ...
  1,   9,  17,  25,  33,  41,  49, ...
  1,  17,  33,  49,  65,  81,  97, ...
  1,  33,  65,  97, 129, 161, 193, ...
  1,  65, 129, 193, 257, 321, 385, ...
  1, 129, 257, 385, 513, 641, 769, ...
  ...
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 70-71, 237-242.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 136.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987.

Crossrefs

Cf. A000012 (k=0), A000051, A000337, A004119, A005408 (n=0), A016813 (n=1), A017077 (n=2), A158057 (n=3).

Programs

  • Mathematica
    A[n_,k_]:=k*2^(n+1)+1; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

G.f.: (1 - 2*x + y)/((1 - x)*(1 - 2*x)*(1 - y)^2).
E.g.f.: exp(x+y)*(1 + 2*exp(x)*y).
Sum_{0<=k<=n} A(n-k,k) = A000295(n+2).
A(n,1) = A000051(n+1).
A(n,3) = A004119(n+2).
A(n,n) = A000337(n+1).