A374238 Primes whose pattern of identical digits is unique among the primes.
11, 3333311, 7771717, 11818181, 515115551, 727722727, 887887787, 1110011101, 1161611161, 1411111441, 1411141411, 1717117117, 1911999919, 3311113111, 3313133311, 3333353533, 5151111551, 5555115151, 5777777557, 7373733337, 7747447777, 7777111777, 8887788787, 9199119991, 9994449499
Offset: 1
Examples
11 is a term since no other prime has the same pattern "AA" of two identical digits (any other AA is divisible by A > 1, hence nonprime). Counterexample: 13 is not a term since another prime 17 has the same pattern "AB" of two nonidentical digits. 7771717 is a term since it's prime and no other prime has the same pattern "AAABABA".
Links
- Dmytro Inosov, Table of n, a(n) for n = 1..154
- Dmytro Inosov, Table of n, a(n) for n = 1..24840
- Dmytro S. Inosov and Emil Vlasák, Cryptarithmically unique terms in integer sequences, arXiv:2410.21427 [math.NT], 2024.
- Wikipedia, Verbal arithmetic.
Crossrefs
Programs
-
Mathematica
NumOfDigits = 10; (*Maximal integer length to be searched for*) A358497[k_] := FromDigits[ Table[Mod[ CountDistinct[Take[#, FirstPosition[#, #[[i]]][[1]]]] &[ IntegerDigits[k]], 10], {i, 1, IntegerLength[k]}]]; A006880[MaxLen_] := PrimePi[10^MaxLen]; Extract[Select[ Tally[Table[{#, A358497[#]} &[Prime[i]], {i, 1, A006880[NumOfDigits]}], #1[[2]] == #2[[2]] &], #[[2]] == 1 &], {All, 1}]
Comments