A376149 Numbers a = +/- 1 such that a + b + c = d are abcd quadruples in the "abcd-conjecture" with a < b < c < d, all |a|, b, c, d are pairwise coprime, the quality q of the quadruple has q > 1, term b = A376144(n) and term c = A376143(n). Quadruples are sorted by c then b.
-1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
a(2) = 27 because the second occurrence of an abcd quadruple with a = +/- 1 is (-1, 27, 2375, 2401) with a = -1. As factors of the form a+d = b+c we have 1 + 7^4 = 3^3 + 5^3 * 19. a(4) = 25 because the fourth occurrence of an abcd quadruple with a = +/- 1 is (1, 25, 11881, 11907) with a = 1. As factors of the form a+b+c = d we have 1 + 5^2 + 109^2 = 3^5 * 7^2.
Links
- David A. Corneth, Table of n, a(n) for n = 1..161
- C. F. W. Ramaekers, The abc-Conjecture and the n-conjecture, Eindhoven University of Technology Nov 12, 2009.
Programs
-
Mathematica
Rad[n_] := Module[{lst=FactorInteger[n]}, Times@@(First/@lst)]; lst={}; Do[Do[If[d=b+c+a; AllTrue[{{Abs[a],b},{Abs[a],c},{Abs[a],d},{b,c},{b,d},{c,d}}, Apply[CoprimeQ]]&&d>Rad[Abs[a]*b*c*d], AppendTo[lst,{a,b,c}]], {c, 3, 3000}, {b, 2, c}], {a, {-1, 1}}]; First/@SortBy[lst,{#[[2]]&,#[[3]]&}]
Extensions
More terms from David A. Corneth, Sep 18 2024
Comments