A376190 For a line L in the plane, let C(L) denote the number of prime points [k, prime(k)] on L, and let M(L) denote the maximum prime(k) for any of these points. a(n) is the maximum of the smallest primes in the lines L with C(L) = n and containing prime A376187(n), or a(n) = -1 if no such lines exist.
2, 2, 3, 5, 19, 18, 7, 13, 967, 113, 83, 619, 103, 1583, 1693, 1621, 1759, 1753, 5923, 197, 6143, 15823, 5849, 1609, 1663, 10333, 1613, 152003, 15683, 16111, 1619, 141871, 15649, 15383, 140989, 141811, 136481, 141319, 15667, 136769, 16033, 16619, 141707, 15473, 135649
Offset: 1
Examples
The best line with 5 points contains the primes 19,23,31,43,47, so a(5) = 19 and A376187(5) = 47. See the Table for further examples.
Links
Extensions
Better definition and a(28)-a(45) from Max Alekseyev, Sep 28 2024
Comments