cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376230 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ).

Original entry on oeis.org

1, 1, 3, 8, 28, 98, 370, 1423, 5643, 22753, 93299, 387324, 1625768, 6886156, 29399430, 126377000, 546527682, 2376094442, 10379414436, 45532904886, 200511864604, 886055084460, 3927826810396, 17462128520246, 77838085223570, 347813389031746, 1557683052973482, 6990670698115144
Offset: 1

Views

Author

Paul D. Hanna, Sep 23 2024

Keywords

Comments

Compare to C(x)^2 = C( x*C(x) + x*C(x)^2 ) where C(x) = x + C(x)^2 is the g.f. of the Catalan numbers (A000108).
Compare to D(x)^2 = D( x*D(x) + 2*x*D(x)^2 + x*D(x)^3 ) where D(x) = x*F(x)^2 and F(x) = 1 + F(x)^3 is the g.f. of A001764.
It appears that, for n >= 1, a(n) is odd iff n = 4*A000695(k) + {0,1,2,3} for some k >= 0, where A000695 is the Moser-de Bruijn sequence (sums of distinct powers of 4).

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 8*x^4 + 28*x^5 + 98*x^6 + 370*x^7 + 1423*x^8 + 5643*x^9 + 22753*x^10 + 93299*x^11 + 387324*x^12 + ...
where A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ).
RELATED SERIES.
Let B(x) be the g.f. of Stern's diatomic series (A002487):
B(x) = x + x^2 + 2*x^3 + x^4 + 3*x^5 + 2*x^6 + 3*x^7 + x^8 + 4*x^9 + 3*x^10 + 5*x^11 + 2*x^12 + 5*x^13 + 3*x^14 + 4*x^15 + x^16 + ...
then A(x)^2 = x * B( A(x) ) and A( x^2/B(x) ) = x.
Other related series begin as follows.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 81*x^6 + 300*x^7 + 1168*x^8 + 4622*x^9 + 18704*x^10 + 76738*x^11 + 319054*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 43*x^6 + 168*x^7 + 657*x^8 + 2649*x^9 + 10803*x^10 + 44733*x^11 + 187130*x^12 + ...
SPECIFIC VALUES.
A(t) = 2/5 at t = 0.21059927171685797509442589615351221149308548505349232763302...
A(t) = 1/3 at t = 0.20284350479378267499481171039846064829566135845385597426623...
A(t) = 1/4 at t = 0.17791461653470954766421766118399907657065676113208935616640...
A(t) = 1/5 at t = 0.15460046705113920070261079885331294477343970681952336915318...
A(1/5) = 0.31995483821441278259163540295892975411660207078522958569307...
A(1/6) = 0.22418805161328879302723377308422267982113532037722470920139...
A(1/7) = 0.17887744157158359437462802053243127220002079340556427992475...
A(1/8) = 0.15001315387877904231502214457445835910409883718703588438530...
A(1/10) = 0.11423875178408085947774841103426888472717517658954942399943...
		

Crossrefs

Programs

  • PARI
    /* Series_Reversion(x / Product_{n>=0} (1 + x^(2^n) + x^(2^(n+1))) ) */
    {a(n) = my(A = serreverse(x / prod(k=0, #binary(n), (1 + x^(2^k) + x^(2^(k+1))) +x*O(x^n))));  polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    /* A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ) */
    {a(n) = my(A=[1], F); for(i=1, n, A=concat(A, 0); F=x*Ser(A);
    A[#A] = -polcoeff( F^2 - subst(F, x, x*F + x*F^2 + x*F^3), #A+1) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*A(x) + x*A(x)^2 + x*A(x)^3 ).
(2) A(x)^4 = A( x*A(x)^3 * (1 + A(x) + A(x)^2) * (1 + A(x)^2 + A(x)^4) ).
(3) A(x)^8 = A( x*A(x)^7 * (1 + A(x) + A(x)^2) * (1 + A(x)^2 + A(x)^4) * (1 + A(x)^4 + A(x)^8) ).
(4) A(x)^(2^n) = A( x*A(x)^(2^n-1) * Product_{k=0..n-1} (1 + A(x)^(2^k) + A(x)^(2^(k+1))) ) for n > 0.
(5) A(x) = x * Product_{n>=0} (1 + A(x)^(2^n) + A(x)^(2^(n+1))).
(6) A(x) = Series_Reversion(x / Product_{n>=0} (1 + x^(2^n) + x^(2^(n+1))) ).
(7) A( x^2/B(x) ) = x where B(x) is the g.f. of Stern's diatomic series (A002487).
(8) A(x)^2 = x * B( A(x) ) where B(x) is the g.f. of Stern's diatomic series (A002487).
(9) A(x)^2 = x * Sum_{n>=0} A(x)^n * Sum_{k=0..n-1} (binomial(k, n-k-1) mod 2).
The radius of convergence r of g.f. A(x) and A(r) satisfy 1 = Sum_{n>=0} (2^n*A(r)^(2^n) + 2^(n+1)*A(r)^(2^(n+1))) / (1 + A(r)^(2^n) + A(r)^(2^(n+1))) and r = A(r) / Product_{n>=0} (1 + A(r)^(2^n) + A(r)^(2^(n+1))), where r = 0.210913447825795710516245118118286786032842961511008744076383999... and A(r) = 0.416616392852528289560364740676108057746635416495044590336240813...