cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376248 Irregular triangle where row n lists m such that rad(m) | n and bigomega(m) <= bigomega(n), where rad = A007947 and bigomega = A001222.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 4, 6, 9, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 4, 5, 10, 25, 1, 11, 1, 2, 3, 4, 6, 8, 9, 12, 18, 27, 1, 13, 1, 2, 4, 7, 14, 49, 1, 3, 5, 9, 15, 25, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 4, 6, 8, 9, 12, 18, 27, 1, 19, 1, 2, 4, 5, 8, 10, 20, 25, 50, 125
Offset: 1

Views

Author

Michael De Vlieger, Oct 09 2024

Keywords

Comments

Analogous to A162306 regarding m such that rad(m) | n, but instead of taking m <= n, we take m such that bigomega(m) <= bigomega(n).
Row n is a finite set of products of prime power factors p^k (i.e., p^k | n) such that Sum_{p|n} k <= bigomega(n).
For prime power n = p^k, k >= 0 (i.e., n in A000961), row p^k of this sequence is the same as row p^k of A027750 and A162306. Therefore, for prime p, row p of this sequence is the same as row p of A027750 and A162306: {1, p}.
For n in A024619, row n of this sequence does not match row n of A162306, since the former contains gpf(n)^bigomega(n) = A006530(n)^A001222(n), which is larger than n.

Examples

			Triangle begins:
   n    row n of this sequence:
  -------------------------------------------
   1:   1;
   2:   1,  2;
   3:   1,  3;
   4:   1,  2   4;
   5:   1,  5;
   6:   1,  2,  3,  4,  6,  9;
   7:   1,  7;
   8:   1,  2,  4,  8;
   9:   1,  3,  9;
  10:   1,  2,  4,  5, 10, 25;
  11:   1, 11;
  12:   1,  2,  3,  4,  6,  8, 9, 12, 18, 27;
        ...
Row n = 10 of this sequence, presented according to 2^k, k = 0..bigomega(n) by columns, 5^i, i = 0..bigomega(n) by rows, showing terms m > n with an asterisk. The remaining m and the parenthetic 8 are in row 10 of A162306:
   1   2   4  (8)
   5  10
  25*
Row n = 12 of this sequence, presented according to 2^k, k = 0..bigomega(n) by columns, 3^i, i = 0..bigomega(n) by rows, showing terms m > n with an asterisk. The remaining m are in row 12 of A162306:
   1   2   4   8
   3   6  12
   9  18*
  27*
		

Crossrefs

Programs

  • Mathematica
    Table[Clear[p]; MapIndexed[Set[p[First[#2]], #1] &, FactorInteger[n][[All, 1]]]; k = PrimeOmega[n]; w = PrimeNu[n]; Union@ Map[Times @@ MapIndexed[p[First[#2]]^#1 &, #] &, Select[Tuples[Range[0, k], w], Total[#] <= k &] ], {n, 120}]

Formula

Row n of this sequence is { m : rad(m) | n, bigomega(m) <= bigomega(n) }.
A376567(n) = binomial(bigomega(n) + omega(n)) = Length of row n, where omega = A001221.