cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A377378 a(n) = sum of row n of A376248.

Original entry on oeis.org

1, 3, 4, 7, 6, 25, 8, 15, 13, 47, 12, 90, 14, 77, 58, 31, 18, 90, 20, 250, 90, 161, 24, 301, 31, 215, 40, 554, 30, 490, 32, 63, 178, 347, 122, 301, 38, 425, 234, 1281, 42, 902, 44, 1786, 330, 605, 48, 966, 57, 250, 370, 2810, 54, 301, 218, 3909, 450, 935, 60, 2751
Offset: 1

Views

Author

Michael De Vlieger, Nov 14 2024

Keywords

Comments

For prime p, a(p) = A244974(p) = A000203(p) = p+1.
For prime power p^k, a(p^k) = A244974(p^k) = A000203(p^k).
For n in A024619, a(n) != A244974(n).

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Block[{k}, Table[k = PrimeOmega[n];
      Total@ Select[Range[n^PrimeNu[n]],
        Divisible[n, rad[#]] && PrimeOmega[#] <= k &], {n, 60}]]

A376567 a(n) = binomial(bigomega(n) + omega(n), omega(n)), where bigomega = A001222 and omega = A001221.

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 2, 4, 3, 6, 2, 10, 2, 6, 6, 5, 2, 10, 2, 10, 6, 6, 2, 15, 3, 6, 4, 10, 2, 20, 2, 6, 6, 6, 6, 15, 2, 6, 6, 15, 2, 20, 2, 10, 10, 6, 2, 21, 3, 10, 6, 10, 2, 15, 6, 15, 6, 6, 2, 35, 2, 6, 10, 7, 6, 20, 2, 10, 6, 20, 2, 21, 2, 6, 10, 10, 6, 20, 2
Offset: 1

Views

Author

Michael De Vlieger, Oct 09 2024

Keywords

Comments

For prime power p^k, a(p^k) = A010846(p^k) = A000005(p^k) = k+1. Therefore, for prime p, a(p) = A010846(p) = A000005(p) = 2.
For n in A024619, a(n) != A010846(n) and A010846(n) > A000005(n).

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    a := n -> binomial(Omega(n) + Omega(n, distinct), Omega(n, distinct)):
    seq(a(n), n = 1..79);  # Peter Luschny, Oct 25 2024
  • Mathematica
    Array[Binomial[#2 + #1, #1] & @@ {PrimeNu[#], PrimeOmega[#]} &, 120]

Formula

a(n) = length of row n of A376248.
a(n) = A010846(n) - A376846(n) + A376847(n).

A377070 Irregular triangle where row n lists m such that rad(m) | n and bigomega(m) = bigomega(n), where rad = A007947 and bigomega = A001222.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 6, 9, 7, 8, 9, 4, 10, 25, 11, 8, 12, 18, 27, 13, 4, 14, 49, 9, 15, 25, 16, 17, 8, 12, 18, 27, 19, 8, 20, 50, 125, 9, 21, 49, 4, 22, 121, 23, 16, 24, 36, 54, 81, 25, 4, 26, 169, 27, 8, 28, 98, 343, 29, 8, 12, 18, 20, 27, 30, 45, 50, 75, 125, 31
Offset: 1

Views

Author

Michael De Vlieger, Oct 25 2024

Keywords

Comments

Row n is a finite set of products of prime power factors p^k (i.e., p^k | n) such that Sum_{p|n} k = bigomega(n), that is, numbers m such that rad(m) | n and m has the same number of prime factors with repetition than does n.

Examples

			Triangle begins:
    n    row n of this sequence:
   -------------------------------------------
    1:   {1}
    2:   {2}
    3:   {3}
    4:   {4}
    5:   {5}
    6:   {4, 6, 9}
    7:   {7}
    8:   {8}
    9:   {9}
   10:   {4, 10, 25}
   ...                       (Select rows appear below)
   12:   {8, 12, 18, 27}
   14:   {4, 14, 49}
   15:   {9, 15, 25}
   18:   {8, 12, 18, 27}
   20:   {8, 20, 50, 125}
   24:   {16, 24, 36, 54, 81}
   30:   {8, 12, 18, 20, 27, 30, 45, 50, 75, 125}
   42:   {8, 12, 18, 27, 28, 42, 63, 98, 147, 343}
   60:   {16, 24, 36, 40, 54, 60, 81, 90, 100, 135, 150, 225, 250, 375, 625}.
.
Diagrams of the rank omega(n)-1 simplexes created by row n of this sequence for select n, ordering k in row n by prime decomposition. The number k = n appears in brackets:
Rank 3:
   n = 30:                    n = 42:
             8                         8
           /  \                      /  \
         12 -- 20                  12 -- 28
        /  \  /  \                /  \  /  \
      18 --[30]-- 50            18 --[42]-- 98
     /  \  /  \  /  \          /  \  /  \  /  \
   27 -- 45 -- 75 -- 125     27 -- 63 --147 -- 343
.
   n = 60:     16
              /  \
            24 -- 40
           /  \  /  \
         36 --[60]-- 50
        /  \  /  \  /  \
      54 -- 90 -- 75 --125
     /  \  /  \  /  \  /  \
   81 --150 --135 --375 --625
.
Rank 4:
   n = 210:
   16
        40
   24   56
             100
        60   140
   36   84   196
                   250
             150   350
        90  [210]  490
   54  126   294   686
                            625
                     375    875
              225    525   1225
        135   315    735   1715
   81   189   441   1029   2401
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Table[k = PrimeOmega[n]; Select[Range[n^PrimeNu[n]], Divisible[n, rad[#]] && PrimeOmega[#] == k &], {n, 30}]

Formula

Row n of this sequence is { m : rad(m) | n, bigomega(m) = bigomega(n) }.
For prime p, row p of this sequence is {p}, generally for prime power p^k, row p^k of this sequence is {p^k}.
For n in A024619, row n of this sequence has more than 1 term.
A377071(n) = length of row n of this sequence.

A377071 a(n) = binomial(bigomega(n) + omega(n) - 1, omega(n) - 1), where bigomega = A001222 and omega = A001221.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 4, 1, 4, 3, 3, 1, 5, 1, 3, 1, 4, 1, 10, 1, 1, 3, 3, 3, 5, 1, 3, 3, 5, 1, 10, 1, 4, 4, 3, 1, 6, 1, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 15, 1, 3, 4, 1, 3, 10, 1, 4, 3, 10, 1, 6, 1, 3, 4, 4, 3, 10, 1, 6, 1, 3, 1, 15, 3
Offset: 1

Views

Author

Michael De Vlieger, Oct 25 2024

Keywords

Comments

Number of permutations of the integer partitions of omega(n) supplemented with zeros such that there are bigomega(n) parts, whose sum equals bigomega(n).
a(n) = cardinality of { m : rad(m) | n, bigomega(m) = bigomega(n) }, where rad = A007947.

Examples

			For n = 6, omega(6) = 2, bigomega(6) = 2, we have 3 exponent combinations [2,0], [1,1], [0,2]. Raising prime factors {2, 3} to these exponents yields {4, 6, 9}, i.e., row 6 of A377070.
For n = 10, omega(10) = 2, bigomega(10) = 2, we have 3 exponent combinations [2,0], [1,1], [0,2]. Raising prime factors {2, 5} to these exponents yields {4, 10, 25}, i.e., row 10 of A377070.
For n = 12, omega(12) = 2, bigomega(12) = 3, we have 4 exponent combinations [3,0], [2,1], [1,2], [0,3]. Raising prime factors {2, 3} to these exponents yields {8, 12, 18, 27}, i.e., row 6 of A377070.
		

Crossrefs

Programs

  • Mathematica
    Array[Binomial[#2 + #1 - 1, #1 - 1] & @@ {PrimeNu[#], PrimeOmega[#]} &, 120]

Formula

a(n) is the length of row n of A377070.
For prime power p^k, k >= 0, a(p^k) = 1.
For n in A024619, a(n) > 1.

A378180 Irregular triangle where row n lists m such that rad(m) | n and bigomega(m) < bigomega(n), where rad = A007947 and bigomega = A001222.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 1, 3, 1, 2, 5, 1, 1, 2, 3, 4, 6, 9, 1, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 1, 1, 2, 3, 4, 6, 9, 1, 1, 2, 4, 5, 10, 25, 1, 3, 7, 1, 2, 11, 1, 1, 2, 3, 4, 6, 8, 9, 12, 18, 27, 1, 5, 1, 2, 13, 1, 3, 9, 1, 2, 4, 7, 14, 49, 1, 1, 2, 3, 4, 5, 6, 9, 10, 15, 25
Offset: 2

Views

Author

Michael De Vlieger, Nov 19 2024

Keywords

Comments

Row n is a finite set of products of prime power factors p^k (i.e., p^k | n) such that Sum_{p|n} k < bigomega(n).
Row n contains numbers m such that rad(m) | n, where the number of prime factors of m with repetition is less than that of n.
Row 1 of this sequence is {}, hence offset of this sequence is set to 2.
For n = p^k (in A246655), row n contains p^j, j = 0..k-1.
For prime p, row p = {1}.
For n in A024619, row n of this sequence does not match row n of A162306, since the former contains gpf(n)^bigomega(n) = A006530(n)^A001222(n), which is larger than n, and since row n of A162306 contains n itself.

Examples

			Select rows n, showing nondivisors k parenthetically (i.e., k not in row n of A027750), and numbers k > n in brackets (i.e., k neither in row n of A162306 nor in row n of A027750):
   n    row n of this sequence:
  -------------------------------------------
   2:   1;
   3:   1;
   4:   1, 2;
   6:   1, 2, 3;
   8:   1, 2, 4;
   9:   1, 3;
  10:   1, 2, 5;
  12:   1, 2, 3,  4,   6,  (9);
  18:   1, 2, 3, (4),  6,   9;
  20:   1, 2, 4,  5,  10, [25];
  24:   1, 2, 3,  4,   6,   8, (9), 12, (18), [27];
  28:   1, 2, 4,  7,  14, [49];
  30:   1, 2, 3, (4),  5,   6, (9), 10,  15,  (25);
  36:   1, 2, 3,  4,   6,   8,  9,  12,  18,  (27);
		

Crossrefs

Programs

  • Mathematica
    Table[Clear[p]; MapIndexed[Set[p[First[#2]], #1] &, FactorInteger[n][[All, 1]]];
     k = PrimeOmega[n]; w = PrimeNu[n];
     Union@ Map[Times @@ MapIndexed[p[First[#2]]^#1 &, #] &,
      Select[Tuples[Range[0, k], w], Total[#] < k &]], {n, 120}]

Formula

Row n of this sequence is { m : rad(m) | n, bigomega(m) < bigomega(n) } = S \ T, where S is row n of A376248, and T is row n of A377070.
A378181(n) = binomial(bigomega(n) + omega(n) - 1, omega(n)) = Length of row n, where omega = A001221.
A378183(n) = rad(n)^binomial(omega(n) + bigomega(n) - 1, bigomega(n)-2) = A377073(n)/A377379(n) = product of row n.

A377073 a(n) = rad(n)^binomial(bigomega(n) + omega(n) - 1, omega(n)), where rad = A007947, bigomega = A001222, and omega = A001221.

Original entry on oeis.org

1, 2, 3, 4, 5, 216, 7, 8, 9, 1000, 11, 46656, 13, 2744, 3375, 16, 17, 46656, 19, 1000000, 9261, 10648, 23, 60466176, 25, 17576, 27, 7529536, 29, 590490000000000, 31, 32, 35937, 39304, 42875, 60466176, 37, 54872, 59319, 10000000000, 41, 17080198121677824, 43, 113379904
Offset: 1

Views

Author

Michael De Vlieger, Oct 27 2024

Keywords

Comments

Product of row n of A377070.

Crossrefs

Programs

  • Mathematica
    Table[Apply[Times, FactorInteger[n][[All, 1]]]^Binomial[PrimeOmega[n] + PrimeNu[n] - 1, PrimeNu[n]], {n, 44}]

Formula

For prime power p^k, k >= 0, a(p^k) = p^k.
For n in A024619, a(n) > n.

A377379 a(n) = rad(n)^binomial(bigomega(n) + omega(n), omega(n) + 1), where rad = A007947, bigomega = A001222, and omega = A001221.

Original entry on oeis.org

1, 2, 3, 8, 5, 1296, 7, 64, 27, 10000, 11, 60466176, 13, 38416, 50625, 1024, 17, 60466176, 19, 10000000000, 194481, 234256, 23, 3656158440062976, 125, 456976, 729, 289254654976, 29, 14348907000000000000000, 31, 32768, 1185921, 1336336, 1500625, 3656158440062976
Offset: 1

Views

Author

Michael De Vlieger, Oct 27 2024

Keywords

Comments

Product of row n of A376248.

Crossrefs

Programs

  • Mathematica
    Array[Binomial[#2 + #1, #1 + 1] & @@ {PrimeNu[#], PrimeOmega[#]} &, 120]

Formula

For prime p, a(p) = A243103(p) = A007955(p) = p.
For prime power p^k, a(p^k) = A243103(p^k) = A007955(p^k) = p^(k+1).
For n in A024619, a(n) != A010846(n) and A010846(n) > A000005(n).

A376847 Number of m > n such that rad(m) | n and Omega(m) <= Omega(n), where rad = A007947 and Omega = A001222.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 1, 0, 3, 1, 1, 0, 4, 0, 1, 0, 3, 0, 4, 0, 0, 1, 1, 1, 2, 0, 1, 1, 5, 0, 5, 0, 3, 2, 1, 0, 6, 0, 1, 1, 3, 0, 1, 1, 5, 1, 1, 0, 11, 0, 1, 2, 0, 1, 5, 0, 3, 1, 5, 0, 4, 0, 1, 1, 3, 1, 5, 0, 8, 0, 1, 0, 11, 1, 1, 1
Offset: 1

Views

Author

Michael De Vlieger, Oct 13 2024

Keywords

Examples

			Table of select n such that a(n) > 0:
   n  a(n)  List of m in A376248 such that Omega(m) <= Omega(n)
  -------------------------------------------------------------
   6    1   {9}
  10    1   {25}
  12    2   {18, 27}
  14    1   {49}
  15    1   {25}
  18    1   {27}
  20    3   {25, 50, 125}
  24    4   {27, 36, 54, 81}
  28    3   {49, 98, 343}
  30    4   {45, 50, 75, 125}
  40    5   {50, 100, 125, 250, 625}
  48    6   {54, 72, 81, 108, 162, 243}
  60   11   {75, 81, 90, 100, 125, 135, 150, 225, 250, 375, 625}
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    cond := (m, n) -> irem(n, Radical(m)) = 0 and Omega(m) <= Omega(n):
    a := n -> nops(select(m -> cond(m, n), [seq(n+1..A068795(n))])):
    seq(a(n), n = 1..87);  # Peter Luschny, Oct 25 2024
  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Table[k = PrimeOmega[n]; w = PrimeNu[n]; Binomial[k + w, w] - Count[Range[n], _?(And[Divisible[n, rad[#]], PrimeOmega[#] > k] &)], {n, 120}]

Formula

a(n) = card({m > n : rad(m) | n, Omega(m) <= Omega(n) }).
a(n) = 0 for prime power n (in A000961).
a(n) = card(A376248 \ A162306).
a(n) = A376567(n) - A010846(n) + A376546(n) = binomial(A001222(n) + A001221(n), A001221(n)) - A010846(n) + A376546(n).

A377072 a(n) = sum of row n of A377070.

Original entry on oeis.org

1, 2, 3, 4, 5, 19, 7, 8, 9, 39, 11, 65, 13, 67, 49, 16, 17, 65, 19, 203, 79, 147, 23, 211, 25, 199, 27, 477, 29, 410, 31, 32, 163, 327, 109, 211, 37, 403, 217, 1031, 41, 786, 43, 1625, 272, 579, 47, 665, 49, 203, 349, 2595, 53, 211, 201, 3355, 427, 903, 59, 2261
Offset: 1

Views

Author

Michael De Vlieger, Nov 14 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{k}, rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
      Table[k = PrimeOmega[n];
        Total@ Select[Range[n^PrimeNu[n]],
          Divisible[n, rad[#]] && PrimeOmega[#] == k &], {n, 60}] ]
Showing 1-9 of 9 results.