cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A378630 Numbers that set records in A376567.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 48, 60, 120, 210, 240, 420, 840, 1680, 3360, 6720, 9240, 13440, 18480, 26880, 36960, 73920, 147840, 240240, 295680, 480480, 591360, 960960, 1921920, 3843840, 7687680, 15375360, 30750720, 32672640, 61501440, 65345280, 123002880, 130690560
Offset: 1

Views

Author

Michael De Vlieger, Dec 02 2024

Keywords

Comments

Numbers n that set records for binomial(bigomega(n)+omega(n), omega(n)), where bigomega = A001222 and omega = A001221.
a(n) is of the form 2^k * P(i), k >= 0, where primorial P = A002110.
Proper subset of A070175.

Crossrefs

Programs

  • Mathematica
    f[x_] := Block[{i, k, m, nn, p}, nn = Product[Prime[j], {j, x}]; Set[{k, i, p}, Range[0, 2]]; {1}~Join~Union@ Reap[Until[i > x, While[Set[m, 2^k*p] <= nn, Sow[m]; k++]; k = 0; i++; p *= Prime[i] ] ][[-1, 1]] ] (* generate A070175 *);
    r = 0; Reap[Do[If[# > r, r = #; Sow[n]] &@ Binomial[#2 + #1, #1] & @@ {PrimeNu[n], PrimeOmega[n]}, {n, f[10]}] ][[-1, 1]]

A376248 Irregular triangle where row n lists m such that rad(m) | n and bigomega(m) <= bigomega(n), where rad = A007947 and bigomega = A001222.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 4, 6, 9, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 4, 5, 10, 25, 1, 11, 1, 2, 3, 4, 6, 8, 9, 12, 18, 27, 1, 13, 1, 2, 4, 7, 14, 49, 1, 3, 5, 9, 15, 25, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 4, 6, 8, 9, 12, 18, 27, 1, 19, 1, 2, 4, 5, 8, 10, 20, 25, 50, 125
Offset: 1

Views

Author

Michael De Vlieger, Oct 09 2024

Keywords

Comments

Analogous to A162306 regarding m such that rad(m) | n, but instead of taking m <= n, we take m such that bigomega(m) <= bigomega(n).
Row n is a finite set of products of prime power factors p^k (i.e., p^k | n) such that Sum_{p|n} k <= bigomega(n).
For prime power n = p^k, k >= 0 (i.e., n in A000961), row p^k of this sequence is the same as row p^k of A027750 and A162306. Therefore, for prime p, row p of this sequence is the same as row p of A027750 and A162306: {1, p}.
For n in A024619, row n of this sequence does not match row n of A162306, since the former contains gpf(n)^bigomega(n) = A006530(n)^A001222(n), which is larger than n.

Examples

			Triangle begins:
   n    row n of this sequence:
  -------------------------------------------
   1:   1;
   2:   1,  2;
   3:   1,  3;
   4:   1,  2   4;
   5:   1,  5;
   6:   1,  2,  3,  4,  6,  9;
   7:   1,  7;
   8:   1,  2,  4,  8;
   9:   1,  3,  9;
  10:   1,  2,  4,  5, 10, 25;
  11:   1, 11;
  12:   1,  2,  3,  4,  6,  8, 9, 12, 18, 27;
        ...
Row n = 10 of this sequence, presented according to 2^k, k = 0..bigomega(n) by columns, 5^i, i = 0..bigomega(n) by rows, showing terms m > n with an asterisk. The remaining m and the parenthetic 8 are in row 10 of A162306:
   1   2   4  (8)
   5  10
  25*
Row n = 12 of this sequence, presented according to 2^k, k = 0..bigomega(n) by columns, 3^i, i = 0..bigomega(n) by rows, showing terms m > n with an asterisk. The remaining m are in row 12 of A162306:
   1   2   4   8
   3   6  12
   9  18*
  27*
		

Crossrefs

Programs

  • Mathematica
    Table[Clear[p]; MapIndexed[Set[p[First[#2]], #1] &, FactorInteger[n][[All, 1]]]; k = PrimeOmega[n]; w = PrimeNu[n]; Union@ Map[Times @@ MapIndexed[p[First[#2]]^#1 &, #] &, Select[Tuples[Range[0, k], w], Total[#] <= k &] ], {n, 120}]

Formula

Row n of this sequence is { m : rad(m) | n, bigomega(m) <= bigomega(n) }.
A376567(n) = binomial(bigomega(n) + omega(n)) = Length of row n, where omega = A001221.

A378180 Irregular triangle where row n lists m such that rad(m) | n and bigomega(m) < bigomega(n), where rad = A007947 and bigomega = A001222.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 1, 3, 1, 2, 5, 1, 1, 2, 3, 4, 6, 9, 1, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 1, 1, 2, 3, 4, 6, 9, 1, 1, 2, 4, 5, 10, 25, 1, 3, 7, 1, 2, 11, 1, 1, 2, 3, 4, 6, 8, 9, 12, 18, 27, 1, 5, 1, 2, 13, 1, 3, 9, 1, 2, 4, 7, 14, 49, 1, 1, 2, 3, 4, 5, 6, 9, 10, 15, 25
Offset: 2

Views

Author

Michael De Vlieger, Nov 19 2024

Keywords

Comments

Row n is a finite set of products of prime power factors p^k (i.e., p^k | n) such that Sum_{p|n} k < bigomega(n).
Row n contains numbers m such that rad(m) | n, where the number of prime factors of m with repetition is less than that of n.
Row 1 of this sequence is {}, hence offset of this sequence is set to 2.
For n = p^k (in A246655), row n contains p^j, j = 0..k-1.
For prime p, row p = {1}.
For n in A024619, row n of this sequence does not match row n of A162306, since the former contains gpf(n)^bigomega(n) = A006530(n)^A001222(n), which is larger than n, and since row n of A162306 contains n itself.

Examples

			Select rows n, showing nondivisors k parenthetically (i.e., k not in row n of A027750), and numbers k > n in brackets (i.e., k neither in row n of A162306 nor in row n of A027750):
   n    row n of this sequence:
  -------------------------------------------
   2:   1;
   3:   1;
   4:   1, 2;
   6:   1, 2, 3;
   8:   1, 2, 4;
   9:   1, 3;
  10:   1, 2, 5;
  12:   1, 2, 3,  4,   6,  (9);
  18:   1, 2, 3, (4),  6,   9;
  20:   1, 2, 4,  5,  10, [25];
  24:   1, 2, 3,  4,   6,   8, (9), 12, (18), [27];
  28:   1, 2, 4,  7,  14, [49];
  30:   1, 2, 3, (4),  5,   6, (9), 10,  15,  (25);
  36:   1, 2, 3,  4,   6,   8,  9,  12,  18,  (27);
		

Crossrefs

Programs

  • Mathematica
    Table[Clear[p]; MapIndexed[Set[p[First[#2]], #1] &, FactorInteger[n][[All, 1]]];
     k = PrimeOmega[n]; w = PrimeNu[n];
     Union@ Map[Times @@ MapIndexed[p[First[#2]]^#1 &, #] &,
      Select[Tuples[Range[0, k], w], Total[#] < k &]], {n, 120}]

Formula

Row n of this sequence is { m : rad(m) | n, bigomega(m) < bigomega(n) } = S \ T, where S is row n of A376248, and T is row n of A377070.
A378181(n) = binomial(bigomega(n) + omega(n) - 1, omega(n)) = Length of row n, where omega = A001221.
A378183(n) = rad(n)^binomial(omega(n) + bigomega(n) - 1, bigomega(n)-2) = A377073(n)/A377379(n) = product of row n.

A376847 Number of m > n such that rad(m) | n and Omega(m) <= Omega(n), where rad = A007947 and Omega = A001222.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 1, 0, 3, 1, 1, 0, 4, 0, 1, 0, 3, 0, 4, 0, 0, 1, 1, 1, 2, 0, 1, 1, 5, 0, 5, 0, 3, 2, 1, 0, 6, 0, 1, 1, 3, 0, 1, 1, 5, 1, 1, 0, 11, 0, 1, 2, 0, 1, 5, 0, 3, 1, 5, 0, 4, 0, 1, 1, 3, 1, 5, 0, 8, 0, 1, 0, 11, 1, 1, 1
Offset: 1

Views

Author

Michael De Vlieger, Oct 13 2024

Keywords

Examples

			Table of select n such that a(n) > 0:
   n  a(n)  List of m in A376248 such that Omega(m) <= Omega(n)
  -------------------------------------------------------------
   6    1   {9}
  10    1   {25}
  12    2   {18, 27}
  14    1   {49}
  15    1   {25}
  18    1   {27}
  20    3   {25, 50, 125}
  24    4   {27, 36, 54, 81}
  28    3   {49, 98, 343}
  30    4   {45, 50, 75, 125}
  40    5   {50, 100, 125, 250, 625}
  48    6   {54, 72, 81, 108, 162, 243}
  60   11   {75, 81, 90, 100, 125, 135, 150, 225, 250, 375, 625}
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    cond := (m, n) -> irem(n, Radical(m)) = 0 and Omega(m) <= Omega(n):
    a := n -> nops(select(m -> cond(m, n), [seq(n+1..A068795(n))])):
    seq(a(n), n = 1..87);  # Peter Luschny, Oct 25 2024
  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Table[k = PrimeOmega[n]; w = PrimeNu[n]; Binomial[k + w, w] - Count[Range[n], _?(And[Divisible[n, rad[#]], PrimeOmega[#] > k] &)], {n, 120}]

Formula

a(n) = card({m > n : rad(m) | n, Omega(m) <= Omega(n) }).
a(n) = 0 for prime power n (in A000961).
a(n) = card(A376248 \ A162306).
a(n) = A376567(n) - A010846(n) + A376546(n) = binomial(A001222(n) + A001221(n), A001221(n)) - A010846(n) + A376546(n).

A378182 Sum of row n of A378180.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 25, 1, 10, 9, 15, 1, 25, 1, 47, 11, 14, 1, 90, 6, 16, 13, 77, 1, 80, 1, 31, 15, 20, 13, 90, 1, 22, 17, 250, 1, 116, 1, 161, 58, 26, 1, 301, 8, 47, 21, 215, 1, 90, 17, 554, 23, 32, 1, 490, 1, 34, 90, 63, 19, 212, 1, 347, 27, 152
Offset: 1

Views

Author

Michael De Vlieger, Nov 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Block[{k}, Table[k = PrimeOmega[n];
      Total@ Select[Range[n^PrimeNu[n]],
        Divisible[n, rad[#]] && PrimeOmega[#] < k &], {n, 60}]]

Formula

a(n) = A376567(n) - A377071(n).
For prime p, a(p) = 1.
For prime power p^k, a(p^k) = A244974(p^k)-p^k = A000203(p^k)-p^k.
a(2^k) = 2^k - 1.
For n in A024619, a(n) != A244974(n).
Showing 1-5 of 5 results.