cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376253 Composite numbers k such that 2^(2^(k-1)-1) == 1 (mod k^2).

Original entry on oeis.org

4681, 15841, 42799, 52633, 220729, 647089, 951481, 1082401, 1145257, 1969417, 2215441, 3567481, 4835209, 5049001, 5681809, 6140161, 6334351, 8725753, 10712857, 11777599, 12327121, 13500313, 14709241, 22564081, 22849481, 22953673, 23828017, 27271151, 28758601, 30576151
Offset: 1

Views

Author

Thomas Ordowski, Sep 17 2024

Keywords

Comments

If 2^(k-1) == 1 (mod k) and 2^(2^(k-1)-1) == 1 (mod k), then 2^(2^(k-1)-1) == 1 (mod k^2). In fact, all such pseudoprimes are strong pseudoprimes to base 2.
Other terms; 951481 = 271*3511, 2215441 = 631*3511, 28758601 = 8191*3511, ... are not Fermat pseudoprimes to base 2, where 3511 is a Wieferich prime. The Wieferich prime 1093 cannot be a factor of these numbers (see A374953).

Crossrefs

Programs

  • Mathematica
    q[k_] := Module[{m = MultiplicativeOrder[2, k^2]}, PowerMod[2, k-1, m] == 1]; Select[Range[1, 10^6, 2], CompositeQ[#] && q[#] &] (* Amiram Eldar, Sep 17 2024 *)
  • PARI
    is(k) = (k > 1) && k % 2 && !isprime(k) && Mod(2, znorder(Mod(2, k^2)))^(k-1) == 1; \\ Amiram Eldar, Sep 17 2024

Extensions

More terms from Amiram Eldar, Sep 17 2024