A376263 Number of strict integer compositions of n whose leaders of increasing runs are increasing.
1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 18, 21, 30, 38, 52, 77, 96, 126, 167, 217, 278, 402, 488, 647, 822, 1073, 1340, 1747, 2324, 2890, 3695, 4690, 5924, 7469, 9407, 11718, 15405, 18794, 23777, 29507, 37188, 45720, 57404, 70358, 87596, 110672, 135329, 167018, 206761, 254200, 311920
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 11 compositions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,3) (2,4) (2,5) (2,6) (2,7) (1,2,3) (3,4) (3,5) (3,6) (1,3,2) (1,2,4) (1,2,5) (4,5) (1,4,2) (1,3,4) (1,2,6) (1,4,3) (1,3,5) (1,5,2) (1,5,3) (1,6,2) (2,3,4) (2,4,3)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Gus Wiseman, Sequences counting and ranking compositions by their leaders (for six types of runs).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@#&&Less@@First/@Split[#,Less]&]],{n,0,15}]
-
PARI
\\ here Q(n) gives n-th row of A008289. Q(n)={Vecrev(polcoef(prod(k=1, n, 1 + y*x^k, 1 + O(x*x^n)), n)/y)} a(n)={if(n==0, 1, my(r=Q(n), s=Vec(serlaplace(exp(exp(x+O(x^#r))- 1)))); sum(k=1, #r, r[k]*s[k]))} \\ Andrew Howroyd, Sep 18 2024
Formula
Extensions
a(26) onwards from Andrew Howroyd, Sep 18 2024
Comments