A376285 a(n) = 20^n * cos(n*A), where A is the angle opposite side BC in a triangle ABC having sidelengths |BC|=3, |CA|=4, |AB|=5; ABC is the smallest integer-sided right triangle.
1, 16, 112, -2816, -134912, -3190784, -48140288, -264175616, 10802495488, 451350102016, 10122205069312, 143370521411584, 538974657445888, -40101019526365184, -1498822487822041088, -31921911799759241216, -421972182463479283712, -734345118927640592384
Offset: 0
References
- Marc Renault, "The Period, Rank, and Order of the (a,b)-Fibonacci Sequence mod m", Math. Mag. 86 (2013) 372 - 380.
Links
- Index entries for linear recurrences with constant coefficients, signature (32,-400).
Programs
-
Mathematica
(*Program 1*) A[a_, b_, c_] := ArcCos[(b^2 + c^2 - a^2)/(2 b c)]; Table[TrigExpand[(20)^n Cos[n A[3, 4, 5]]], {n, 0, 30}] (*Program 2*) LinearRecurrence[{32, -400}, {1, 16}, 30]
Formula
a(n) = 20^n * cos(n*A), where A is the angle opposite side BC in a triangle ABC having sidelengths |BC|=3, |CA|=4, |AB|=5; ABC is the smallest integer-sided right triangle.
a(n) = 32*a(n-1) - 400*a(n-2), where a(0) = 1, a(1) = 16.
From Stefano Spezia, Oct 03 2024: (Start)
G.f.: (1 - 16*x)/(1 - 32*x + 400*x^2).
E.g.f.: exp(16*x)*cos(12*x). (End)
Comments