cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376290 a(n) = Sum_{k=1..n-1} sigma_2(k) * sigma_3(n-k).

Original entry on oeis.org

0, 1, 14, 83, 324, 986, 2484, 5625, 11304, 21596, 37824, 64746, 103252, 163536, 244200, 364855, 517478, 741087, 1009244, 1394080, 1842690, 2470668, 3178188, 4171260, 5242610, 6735966, 8331338, 10511692, 12777898, 15922212, 19067506, 23429969, 27785000, 33707290
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 19 2024

Keywords

Comments

In general, if k>=1, m>=1 and a(n) = Sum_{j=1..n-1} sigma_k(j) * sigma_m(n-j), then Sum_{j=1..n} a(j) ~ Gamma(k+1) * Gamma(m+1) * zeta(k+1) * zeta(m+1) * n^(k+m+2) / Gamma(k+m+3).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[2, k]*DivisorSigma[3, n-k], {k, n-1}], {n, 1, 50}]
  • PARI
    a(n) = sum(k=1, n-1, sigma(k, 2) * sigma(n-k, 3)); \\ Michel Marcus, Sep 19 2024

Formula

Sum_{k=1..n} a(k) ~ Pi^4 * zeta(3) * n^7 / 37800.