A376336 Least positive integer m such that tau(m) is divisible by n, where the Ramanujan tau function is given by A000594.
1, 2, 2, 2, 5, 2, 3, 2, 3, 5, 8, 2, 7, 3, 5, 4, 239, 3, 89, 8, 3, 8, 4, 2, 25, 7, 6, 3, 13, 5, 139, 4, 8, 239, 5, 3, 191, 89, 11, 8, 257, 3, 19, 8, 10, 4, 67, 6, 15, 40, 239, 7, 107, 6, 8, 6, 89, 13, 61, 8, 9, 139, 3, 4, 35, 8, 31, 239, 5, 5, 137, 6, 2069, 191, 40, 178, 19, 11, 25, 8, 9, 257, 227, 3, 239, 19, 26, 8, 59, 10, 7, 4, 278, 67, 89, 6, 863, 15, 24, 40
Offset: 1
Keywords
Examples
a(5) = 5 since tau(5) = 4830 is divisible by 5, but none of tau(1) = 1, tau(2) = -24, tau(3) = 252 and tau(4) = -1472 is a multiple of 5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A000594.
Programs
-
Mathematica
f[n_]:=f[n]=RamanujanTau[n]; L={}; Do[m=1;Label[bb];If[Mod[f[m],n]==0,L=Append[L,m];Goto[aa]];m=m+1;Goto[bb];Label[aa],{n,1,100}];Print[L] (* Or: *) a[n_] := SelectFirst[Range[1, 30000], Divisible[RamanujanTau[#], n] &]; Array[a, 1000] (* Peter Luschny, Dec 22 2024 *)
-
PARI
first(n) = { my(todo = [1..n], res = vector(n, i, oo)); for(i = 1, oo, c = ramanujantau(i); for(j = 1, #todo, if(res[todo[j]] > i && c % todo[j] == 0, res[todo[j]] = i; todo = setminus(todo, Set(todo[j])); if(#todo == 0, return(res) ) ) ); );} \\ David A. Corneth, Dec 23 2024
-
SageMath
from itertools import count tau = delta_qexp(30000) # adjust search length for n > 1000 a = lambda n: next((k for k in count(1) if n.divides(tau[k]))) print([a(n) for n in srange(1, 1001)]) # Peter Luschny, Dec 22 2024
Comments