A376341 Position of first appearance of n in A057820, the sequence of first differences of prime-powers, or 0 if n does not appear.
1, 5, 10, 13, 19, 25, 199, 35, 118, 48, 28195587, 61, 3745011205066703, 80, 6635, 312, 1079, 207, 3249254387600868788, 179, 43580, 216, 21151968922, 615, 762951923, 403, 1962, 466, 12371, 245, 1480223716, 783, 494890212533313, 1110, 2064590, 1235, 375744164943287809536
Offset: 1
Keywords
Examples
a(4) = 13, because the first occurrence of 4 in A057820 is at index 13. The corresponding first pair of consecutive prime powers with difference 4 is (19, 23), and a(4) = A025528(23) = 13. a(61) = A024622(96), because the first pair of consecutive prime powers with difference 61 is (2^96, 2^96+61), and A025528(2^96+61) = A024622(96).
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..60
Crossrefs
Programs
-
Mathematica
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; q=Differences[Select[Range[100],#==1||PrimePowerQ[#]&]]; Table[Position[q,k][[1,1]],{k,mnrm[q]}]
Formula
A057820(a(n)) = n whenever a(n) > 0. - Pontus von Brömssen, Sep 24 2024
Extensions
Definition modified by Pontus von Brömssen, Sep 26 2024
More terms from Pontus von Brömssen, Sep 27 2024
Comments