cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376347 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*(exp(x^3) - 1)) ).

Original entry on oeis.org

1, 0, 0, 0, 24, 0, 0, 2520, 201600, 0, 604800, 259459200, 16765056000, 259459200, 406832025600, 100037089152000, 5963169474662400, 844757641728000, 560207699251200000, 107716905363549081600, 6157546579533533184000, 3525275009847951360000, 1582967914636148232192000, 264668100119565849907200000
Offset: 0

Views

Author

Seiichi Manyama, Sep 21 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x*(exp(x^3)-1)))/x))
    
  • PARI
    a(n) = sum(k=0, n\3, (2*n-3*k)!*stirling(k, n-3*k, 2)/k!)/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (2*n-3*k)! * Stirling2(k,n-3*k)/k!.

A376443 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*(exp(x^2) - 1))^2 ).

Original entry on oeis.org

1, 0, 0, 12, 0, 120, 10800, 1680, 766080, 55913760, 48686400, 12973625280, 878369184000, 2257312337280, 475877474392320, 31178226637958400, 176135891323392000, 32566007822802854400, 2111180034178805990400, 22027962609483730099200, 3749400628293386626560000, 244391453278125083388057600
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x*(exp(x^2)-1))^2)/x))
    
  • PARI
    a(n) = 2*n!*sum(k=0, n\2, (3*n-2*k+1)!*stirling(k, n-2*k, 2)/k!)/(2*n+2)!;

Formula

E.g.f. A(x) satisfies A(x) = 1/(1 - x*A(x) * (exp(x^2*A(x)^2) - 1))^2.
a(n) = (2 * n!/(2n+2)!) * Sum_{k=0..floor(n/2)} (3*n-2*k+1)! * Stirling2(k,n-2*k)/k!.

A376444 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*(exp(x^2) - 1))^3 ).

Original entry on oeis.org

1, 0, 0, 18, 0, 180, 23760, 2520, 1693440, 180033840, 107956800, 42093263520, 4131388800000, 7363478041920, 2262271571239680, 213613512570057600, 843365230060953600, 226557537882970694400, 20988751571439158707200, 154613821575430253836800, 38125864157166326661120000, 3508865828606684108929766400
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x*(exp(x^2)-1))^3)/x))
    
  • PARI
    a(n) = 3*n!*sum(k=0, n\2, (4*n-2*k+2)!*stirling(k, n-2*k, 2)/k!)/(3*n+3)!;

Formula

E.g.f. A(x) satisfies A(x) = 1/(1 - x*A(x) * (exp(x^2*A(x)^2) - 1))^3.
a(n) = (3 * n!/(3n+3)!) * Sum_{k=0..floor(n/2)} (4*n-2*k+2)! * Stirling2(k,n-2*k)/k!.
Showing 1-3 of 3 results.