A376348 a(n) is the number of multisets with n primes with which an n-gon with perimeter prime(n) can be formed.
0, 0, 1, 1, 2, 2, 3, 7, 7, 12, 19, 19, 25, 44, 72, 72, 119, 147, 152, 234, 292, 435, 777, 920, 946, 1135, 1161, 1377, 3702, 4293, 5942, 5942, 10741, 10741, 14483, 18953, 22091, 28658, 37686, 37686, 63053, 63053, 72389, 72389, 132732, 233773, 265312, 265312, 300443, 373266
Offset: 3
Keywords
Examples
a(7) = 2 because exactly the 2 partitions (2, 2, 2, 2, 3, 3, 3) and (2, 2, 2, 2, 2, 2, 5) have 7 prime parts and their sum is p(7) = 17.
Links
- Eric Weisstein's World of Mathematics, Polygon
Crossrefs
Programs
-
Maple
A376348:=proc(n) local a,p,x,i; a:=0; p:=ithprime(n); for x from NumberTheory:-pi(p/n)+1 to NumberTheory:-pi(p/2) do a:=a+numelems(select(i->nops(i)=n-1 and andmap(isprime,i),combinat:-partition(ithprime(n)-ithprime(x),ithprime(x)))) od; return a end proc; seq(A376348(n),n=3..42);
-
PARI
a(n)={my(m=prime(n), p=primes(primepi((m-1)\2))); polcoef(polcoef(1/prod(i=1, #p, 1 - y*x^p[i], 1 + O(x*x^m)), m),n)} \\ Andrew Howroyd, Oct 13 2024
Extensions
a(43) onwards from Andrew Howroyd, Oct 13 2024
Comments