A376362 The number of unitary divisors that are squares of primes applied to the powerful numbers.
0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 2, 1, 1, 0, 0, 1, 1, 2, 1, 0, 2, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 1, 1, 0, 3, 1, 1, 1, 0, 0, 2, 1, 1, 2, 2, 0, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 3, 2, 1, 1, 0, 0, 1, 0, 2, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 2, 0
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Sourabhashis Das, Wentang Kuo, and Yu-Ru Liu, On the number of prime factors with a given multiplicity over h-free and h-full numbers, Journal of Number Theory, Vol. 267 (2025), pp. 176-201; arXiv preprint, arXiv:2409.11275 [math.NT], 2024. See Theorem 1.3.
- Index entries for sequences related to powerful numbers.
Programs
-
Mathematica
f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # > 1 &], Count[e, 2], Nothing]]; Array[f, 3500]
-
PARI
lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] == 1, is = 0; break)); if(is, print1(#select(x -> x == 2, e), ", ")));}