A376365 The number of distinct prime factors of the cubefree numbers.
0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 3, 1, 2, 2, 3, 1, 1, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Sourabhashis Das, Wentang Kuo, and Yu-Ru Liu, Distribution of omega(n) over h-free and h-full numbers, arXiv:2409.10430 [math.NT], 2024. See Theorem 1.1.
Programs
-
Mathematica
f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # < 3 &], Length[e], Nothing]]; Array[f, 150]
-
PARI
lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] > 2, is = 0; break)); if(is, print1(#e, ", ")));}