A376369 Number of nondecreasing tuples (x_1, ..., x_k) of positive integers (or integer partitions) such that the multinomial coefficient (x_1 + ... + x_k)!/(x_1! * ... * x_k!) equals n.
1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2
Keywords
Examples
a(6) = 3, because 6 can be written as a multinomial coefficient in 3 ways: 6 = 6!/(1!*5!) = 4!/(2!*2!) = 3!/(1!*1!*1!).
Links
- Pontus von Brömssen, Table of n, a(n) for n = 2..10000
Comments