A376375 Numbers that occur exactly 5 times in A036038, i.e., numbers m such that the multinomial coefficient (x_1 + ... + x_k)!/(x_1! * ... * x_k!) is equal to m for exactly 5 integer partitions (x_1, ..., x_k).
120, 1680, 60060, 83160, 180180, 240240, 831600, 900900, 1081080, 1627920, 1663200, 2522520, 2882880, 3603600, 7567560, 10090080, 14414400, 20180160, 25225200, 30270240, 35814240, 36756720, 37837800, 46558512, 49008960, 51482970, 60540480, 61261200, 64864800
Offset: 1
Keywords
Examples
120 is a term, because it can be represented as a multinomial coefficient in exactly 5 ways: 120 = 120!/(1!*119!) = 16!/(2!*14!) = 10!/(3!*7!) = 6!/(1!*1!*1!*3!) = 5!/(1!*1!*1!*1!*1).
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..10000
Comments