A376396 Triangle read by rows: the n-th row gives the least sequence of n consecutive primes all of the form 4*m + 1.
5, 13, 17, 89, 97, 101, 389, 397, 401, 409, 2593, 2609, 2617, 2621, 2633, 11593, 11597, 11617, 11621, 11633, 11657, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689
Offset: 1
Examples
The triangle begins as: 5; 13, 17; 89, 97, 101; 389, 397, 401, 409; 2593, 2609, 2617, 2621, 2633; 11593, 11597, 11617, 11621, 11633, 11657; 11593, 11597, 11617, 11621, 11633, 11657, 11677; 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681; 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689; 373649, 373657, 373661, 373669, 373693, 373717, 373721, 373753, 373757, 373777; ...
References
- R. K. Guy, Unsolved Problems in Number Theory, 2nd. ed., Section A4.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 11593 at. p. 173.
Links
- Jens Kruse Andersen, Consecutive Congruent Primes.
- D. K. L. Shiu, Strings of Congruent Primes, J. Lond. Math. Soc. 61 (2) (2000) 359-373.
Programs
-
Mathematica
kold=1; row[n_]:=Module[{r={}}, k=kold; While[Mod[Prime[k],4]!=1, k++]; While[Product[Boole[Mod[Prime[k+i],4]==1], {i,0,n-1}]!=1, k++]; kold=k; Table[Prime[i+k], {i,0,n-1}]]; Array[row,9]//Flatten
Comments