A376399 a(0) = 1, and for n > 0, a(n) is the least k such that A276075(k) = a(n-1) + A276075(a(n-1)), where A276075 is the factorial base log-function.
1, 2, 6, 30, 1050, 519090, 1466909163669353522118
Offset: 0
Keywords
Examples
Starting with a(0) = 1, we take partial sums of previous terms, and apply A276076 to get the next term as: a(1) = A276076(1) = 2, a(2) = A276076(1+2) = 6, a(3) = A276076(1+2+6) = 30, a(4) = A276076(1+2+6+30) = 1050, a(5) = A276076(1+2+6+30+1050) = 519090, a(6) = A276076(1+2+6+30+1050+519090) = 1466909163669353522118, etc.
Links
Crossrefs
Programs
-
PARI
\\ Do it hard way, by searching: up_to = 12; A276075(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*(primepi(f[k, 1])!)); }; A376399list(up_to) = { my(v=vector(up_to), x); v[1]=1; for(n=2,up_to,x=v[n-1]+A276075(v[n-1]); for(k=1,oo,if(A276075(k)==x,v[n]=k;break)); print1(v[n], ", ")); (v); }; v376399 = A376399list(1+up_to); A376399(n) = v376399[1+n];
-
PARI
\\ Compute, do not search, much faster: up_to = 8; A276076(n) = { my(m=1, p=2, i=2); while(n, m *= (p^(n%i)); n = n\i; p = nextprime(1+p); i++); (m); }; A376399list(up_to) = { my(v=vector(up_to), s=1); v[1]=1; for(n=2,up_to,v[n] = A276076(s); s += v[n]); (v); }; v376399 = A376399list(1+up_to); A376399(n) = v376399[1+n];
Comments