A376406 a(0) = 1, and for n > 0, a(n) = A019565(Sum_{i=0..n-1} a(i)), where A019565 is the base-2 exp-function.
1, 2, 6, 14, 330, 10166, 12075690, 1174153011328084322, 73582975079922326904310062621361286633125176265747127754
Offset: 0
Keywords
Examples
Starting with a(0) = 1, we take partial sums of previous terms, and apply A019565 to get the next term, and in the rightmost column, we "unbox" that term by applying A048675 to get A376407(n), which thus gives the partial sums of a(0)..a(n-1): a(0) = 1 -> 0 a(1) = A019565(1) = 2, -> 1 = 1 a(2) = A019565(1+2) = 6, -> 3 = 1+2 a(3) = A019565(1+2+6) = 14, -> 9 = 1+2+6 a(4) = A019565(1+2+6+14) = 330, -> 23 = 1+2+6+14 a(5) = A019565(1+2+6+14+330) = 10166, -> 353 = 1+2+6+14+330 a(6) = A019565(1+2+6+14+330+10166) = 12075690, -> 10519 = 1+2+6+14+330+10166 etc.
Comments