A109162
a(1) = 1; for n > 1, a(n) = A019565(a(n-1)).
Original entry on oeis.org
1, 2, 3, 6, 15, 210, 10659, 54230826, 249853434654335387610276087
Offset: 1
a(4) = 6, which is 110 in binary. So a(5) is the product of the primes corresponding to the 1's of 110, 3*5 = 15.
-
NestList[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[#, 2] &, 1, 11] (* Michael De Vlieger, Aug 20 2017 *)
A376406
a(0) = 1, and for n > 0, a(n) = A019565(Sum_{i=0..n-1} a(i)), where A019565 is the base-2 exp-function.
Original entry on oeis.org
1, 2, 6, 14, 330, 10166, 12075690, 1174153011328084322, 73582975079922326904310062621361286633125176265747127754
Offset: 0
Starting with a(0) = 1, we take partial sums of previous terms, and apply A019565 to get the next term, and in the rightmost column, we "unbox" that term by applying A048675 to get A376407(n), which thus gives the partial sums of a(0)..a(n-1):
a(0) = 1 -> 0
a(1) = A019565(1) = 2, -> 1 = 1
a(2) = A019565(1+2) = 6, -> 3 = 1+2
a(3) = A019565(1+2+6) = 14, -> 9 = 1+2+6
a(4) = A019565(1+2+6+14) = 330, -> 23 = 1+2+6+14
a(5) = A019565(1+2+6+14+330) = 10166, -> 353 = 1+2+6+14+330
a(6) = A019565(1+2+6+14+330+10166) = 12075690, -> 10519 = 1+2+6+14+330+10166
etc.
Cf.
A376407 (=
A048675(a(n)), also gives the partial sums from its second term onward).
-
up_to = 12;
A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
A376406list(up_to) = { my(v=vector(up_to), s=1); v[1]=1; for(n=2,up_to,v[n] = A019565(s); s += v[n]); (v); };
v376406 = A376406list(1+up_to);
A376406(n) = v376406[1+n];
Original entry on oeis.org
0, 1, 3, 9, 99, 353529, 274407373885532679, 2443417474326613595267894539584266773823049253134356679026035220285823429
Offset: 0
Showing 1-3 of 3 results.
Comments