A376448 a(n) = k if k is odd otherwise a(n) = k+1 and k = floor( 2^n*(1+sqrt(5))/2 ).
1, 3, 7, 13, 25, 51, 103, 207, 415, 829, 1657, 3313, 6627, 13255, 26509, 53019, 106039, 212079, 424157, 848315, 1696631, 3393263, 6786527, 13573053, 27146105, 54292211, 108584423, 217168845, 434337691, 868675383, 1737350767, 3474701533, 6949403065, 13898806131, 27797612261, 55595224523
Offset: 0
Examples
An example for a pseudo Weyl sequence obtained from a(3): {0, 1, 2, 3, 4, 5, 6, 7} * a(3) mod 2^3 = {0, 5, 2, 7, 4, 1, 6, 3}. (Without zero also part of A194868).
Programs
-
Mathematica
k[n_]:=Floor[2^n*GoldenRatio];Table[If[OddQ[k[n]],k[n],k[n]+1],{n,0,35}] (* James C. McMahon, Oct 20 2024 *)
-
PARI
a(n) = {my( m=floor(quadgen(5)<
Formula
a(n) = 2*A293313(n-1) + 1, for n > 0.
Comments