A376459 a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, n-k).
1, -1, -17, 143, 751, -20251, 30871, 2584847, -21586193, -251907751, 5176221733, 5498864117, -913327142441, 5540080670669, 120825094592983, -1860921180719857, -8346832617144593, 401702184476719649, -1403893237226212151, -64680833271083055607, 743195619082337134501, 6754996433001423371159, -192371016736634220839987, 139058974519768723621493, 36163089652079749214625751, -298797649039016749340832751
Offset: 0
Examples
Examples of supercongruences: (1a) a(11) - a(1) = 5498864117 - (-1) = 2*(3^3)*(11^3)*76507 == 0 (mod 11^3); (1b) a(10) - a(0) = 5176221733 - 1 = (2^2)*(3^5)*(11^3)*4001 == 0 (mod 11^3). (2a) a(5^2) - a(5) = -298797649039016749340832751 - (-20251) = -(2^2)*3*(5^6)*(11^2)*47*89*1683049*1870707593 == 0 (mod 5^6); (2b) a(5^2 - 1) - a(5 - 1) = 36163089652079749214625751 - 751 = (2^3)*3*(5^6)*7*11*17*101*729412564491671 == 0 (mod 5^6).
Programs
Formula
P-recursive: n^3*(n - 1)*(946*n^2 - 3053*n + 2475)*a(n) = -2*(n - 1)*(3784*n^5 - 17888*n^4 + 31787*n^3 - 26726*n^2 + 11051*n - 1824)*a(n-1) - 2*(104060*n^6 - 752070*n^5 + 2212238*n^4 - 3374927*n^3 + 2802671*n^2 - 1196821*n + 205920)*a(n-2) - 2*(n - 2)^3*(2*n - 3)*(946*n^2 - 1161*n + 368)*a(n-3) with a(0) = 1, a(1) = -1 and a(2) = -17.
Comments