cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376467 Triangular array read by rows: A063007 * A007318.

Original entry on oeis.org

1, 3, 2, 13, 18, 6, 63, 132, 90, 20, 321, 900, 930, 420, 70, 1683, 5910, 8190, 5600, 1890, 252, 8989, 37926, 65940, 60480, 30870, 8316, 924, 48639, 239624, 501228, 577080, 395010, 160776, 36036, 3432, 265729, 1497096, 3660300, 5072760, 4358970, 2378376, 804804, 154440, 12870, 1462563, 9274410, 25951860, 42060480, 43513470, 29801772, 13513500, 3912480, 656370, 48620
Offset: 0

Views

Author

Peter Bala, Sep 30 2024

Keywords

Comments

Note that the n-th row generating polynomial of A063007 is equal to P(n,2*x + 1), where P(n,x) denotes the n-th Legendre polynomial.
The matrix product A063007 * A007318^(-1) is equal to a signed version of A063007 and A007318^(-1) * A063007 = A115951.

Examples

			Triangle begins
 n\k|     0       1       2       3       4       5      6     7
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |     1
  1 |     3       2
  2 |    13      18       6
  3 |    63     132      90      20
  4 |   321     900     930     420      70
  5 |  1683    5910    8190    5600    1890     252
  6 |  8989   37926   65940   60480   30870    8316    924
  7 | 48639  239624  501228  577080  395010  160776  36036  3432
  ...
		

Crossrefs

A000984 (main diagonal), A002457( (1/3)*first subdiagonal ), A001850 (Column 0), A002695 ( (1/2)*Column 1 ), A277660 ( (1/3)*Column 2 ), A006442 (row sums).

Programs

  • Maple
    A376467 := proc(n, k); add(binomial(n, j)*binomial(n+j, j)*binomial(j, k), j = k..n) end:
    seq(print(seq(A376467(n, k) , k = 0..n)), n = 0..10);

Formula

T(n, k) = Sum_{j = k..n} binomial(n, j)*binomial(n+j, j)*binomial(j, k).
(n - k)*T(n, k) = 3*(2*n - 1)*T(n-1, k) - (n + k - 1)*T(n-2, k).
T(n, k) = (1/k!) * (d/dx)^k (P(n, 2*x+1)) evaluated at x = 1, where P(n,x) denotes the n-th Legendre polynomial.
G.f. for triangle: 1/sqrt(1 - 6*t + t^2 - 4*t*x) = 1 + (3 + 2*x)*t + (13 + 18*x + 6*x^2)*t^2 + ....
G.f. for column k: binomial(2*k, k) * x^k/(1 - 6*x + x^2)^(k+1/2).
T(n, k) is divisible by binomial(2*k, k) and the array ( T(n, k)/binomial(2*k, k) )n,k >= 0 is the Riordan array (1/sqrt(1 - 6*x + x^2), x/(1 - 6*x + x^2)).
T(n, k) is divisible by binomial(n+k, k) and the array ( T(n, k)/binomial(n+k, k) )n,k >= 0 is the Riordan array A118384.
T(n, n) = binomial(2*n, n); T(n, n-1) = 3*(2*n-1)!/(n-1)!^2 = 3 * A002457(n-1) for n >= 1.
The n-th row polynomial R(n, x) = Sum_{k = 0..n} binomial(n, k)*binomial(n+k, k)*(1 + x)^k = P(n, 2*x+3) = hypergeom([-n, n+1], [1], -1-x).
Recurrence: n*R(n, x) = (2*x + 3)*(2*n - 1)*R(n-1, x) - (n - 1)*R(n-2, x) with R(0, x) = 1.
If we set R(-1,x) = 1, we can run the recurrence backwards to give R(-n, x) = Sum_{k = 0..n} binomial(-n, k)*binomial(-n+k, k)*(1 + x)^k = R(n-1, x).
R(n, x) = (-1)^n * R(n, -x-3).
R(n, x) = 1/n! * (d/dx)^n( ((1 + x)*(2 + x))^n ).
R(1, x) = 3 + 2*x divides R(2*n+1, x) in the polynomial ring Z[x].