cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A376472 Composite terms in A376471.

Original entry on oeis.org

6, 9, 20, 25, 77, 81, 121, 208, 256, 323, 361, 625, 667, 841, 1147, 1369, 1763, 1849, 2303, 2401, 3127, 3481, 4087, 4489, 5183, 5329, 6557, 6561, 6889, 8633, 9409, 10403, 10609, 11663, 11881, 14351, 14641, 16129, 17947, 18769, 20711, 22201, 23707, 24649, 27221
Offset: 1

Views

Author

Amiram Eldar, Sep 24 2024

Keywords

Comments

Are there terms in this sequence that have more than 2 distinct prime factors?

Crossrefs

Intersection of A002808 and A376471.

Programs

  • Mathematica
    expPow2Q[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &]; s[1] = 1; s[n_] := s[n] = Module[{prod = Times @@ Array[s, n - 1], k = s[n - 1] + 1}, While[! expPow2Q[prod*k], k++]; k]; Select[Array[s, 1000], CompositeQ]
  • PARI
    ispow2(n) = if(n == 0, 1, n >> valuation(n, 2) == 1);
    lista(pindmax) = {my(pmax = prime(pindmax), v = vector(pindmax), f, pind, prd); for(k = 2, pmax, f = factor(k); pind = apply(x -> primepi(x), f[,1]); for(i = 1, #pind, v[pind[i]] += f[i, 2]); if(vecprod(apply(x -> ispow2(x), v)) > 0, if(!isprime(k), print1(k, ", ")), for(i = 1, #pind, v[pind[i]] -= f[i, 2])));}
Showing 1-1 of 1 results.