cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A376471 Lexicographically earliest strictly increasing sequence of numbers whose partial products are all exponentially 2^n-numbers (A138302).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 11, 13, 17, 19, 20, 23, 25, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 208, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Amiram Eldar, Sep 24 2024

Keywords

Comments

All the primes are terms.

Examples

			1 * 2 = 2^1 and 1 = 2^0.
1 * 2 * 3 = 6 = 2^1 * 3^1 and 1 = 2^0.
1 * 2 * 3 * 5 * 6 = 180 = 2^2 * 3^2 * 5^1, 1 = 2^0 and 2 = 2^1.
		

Crossrefs

Disjoint union of A000040 and A376472.
Similar sequences:
Sequence | Partial products are in | Exponents are in
--------------+-------------------------+------------------------
A050376 | A037992 | A000225 \ {0} (2^n-1)
A089237 | A268335 | A005408 (odd numbers)
{1} U A246551 | A246551 | A000290 \ {0} (squares)
this sequence | A138302 | A000079 (powers of 2)

Programs

  • Mathematica
    expPow2Q[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &]; a[1] = 1; a[n_] := a[n] = Module[{prod = Times @@ Array[a, n - 1], k = a[n - 1] + 1}, While[! expPow2Q[prod*k], k++]; k]; Array[a, 100]
  • PARI
    ispow2(n) = if(n == 0, 1, n >> valuation(n, 2) == 1);
    lista(pindmax) = {my(pmax = prime(pindmax), v = vector(pindmax), f, pind, prd); print1(1, ", "); for(k = 2, pmax, f = factor(k); pind = apply(x -> primepi(x), f[,1]); for(i = 1, #pind, v[pind[i]] += f[i, 2]); if(vecprod(apply(x -> ispow2(x), v)) > 0, print1(k, ", "), for(i = 1, #pind, v[pind[i]] -= f[i, 2])));}
Showing 1-1 of 1 results.