A376473 Numbers k such that 2^(2^(k-1)-1) == 1 (mod k^2) and 2^(k-1) =/= 1 (mod k).
951481, 2215441, 28758601, 81844921, 1221936841, 10370479321, 16287076081, 26946809137, 33663998161, 35094800881, 134619011281, 188455112353, 299226038833, 314240366881, 383116075201, 594981050401, 1230227375833, 1572186445201, 2096189123113, 2377714473001
Offset: 1
Keywords
Programs
-
Mathematica
q[k_] := Module[{m = MultiplicativeOrder[2, k^2]}, PowerMod[2, k - 1, m] == 1]; Select[Range[1, 2300000, 2], PowerMod[2, # - 1, #] != 1 && q[#] &] (* Amiram Eldar, Sep 24 2024 *)
-
PARI
is(k) = (k > 1) && k % 2 && !isprime(k) && Mod(2, k)^(k-1) != 1 && Mod(2, znorder(Mod(2, k^2)))^(k-1) == 1; \\ Amiram Eldar, Sep 24 2024
-
PARI
list(lim)=my(v=List()); if(lim>3<<64, warning("May miss multiples of Wieferich primes > 2^64.")); forstep(n=10533,lim,7022, if(Mod(2, znorder(Mod(2, n^2)))^(n-1) == 1 && Mod(2,n)^n != 2, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Sep 24 2024
Extensions
More terms from Amiram Eldar, Sep 24 2024
Comments