cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376477 E.g.f. satisfies A(x) = exp( x^3*A(x)^3 * (1 + x*A(x)) ).

Original entry on oeis.org

1, 0, 0, 6, 24, 0, 2520, 40320, 181440, 6048000, 219542400, 2874009600, 57340483200, 2847824179200, 73556683200000, 1606870263398400, 77095250039808000, 3111553620983808000, 91548244100875161600, 4054836680294400000000, 210947475222439667712000, 8463340108487290650624000, 381818416967499733917696000
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, (n+1)^(k-1)*binomial(k, n-3*k)/k!);

Formula

E.g.f.: (1/x) * Series_Reversion( x*exp(-x^3 * (1 + x)) ).
a(n) = n! * Sum_{k=0..floor(n/3)} (n+1)^(k-1) * binomial(k,n-3*k)/k!.

A376492 E.g.f. satisfies A(x) = exp(x^2 * (1 + x) * A(x)^2).

Original entry on oeis.org

1, 0, 2, 6, 60, 600, 7680, 123480, 2212560, 47053440, 1104092640, 29200802400, 845985349440, 26864561243520, 924556913280000, 34334318184566400, 1367790957223891200, 58194757879908249600, 2633788044958380710400, 126340003102675832870400
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x^2*(1+x))/2)))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (2*k+1)^(k-1)*binomial(k, n-2*k)/k!);

Formula

E.g.f.: exp( -LambertW(-2*x^2 * (1+x))/2 ).
a(n) = n! * Sum_{k=0..floor(n/2)} (2*k+1)^(k-1) * binomial(k,n-2*k)/k!.

A376564 E.g.f. satisfies A(x) = exp( x*A(x) * (1 + x^2*A(x)^2) ).

Original entry on oeis.org

1, 1, 3, 22, 245, 3456, 60487, 1283584, 31971753, 912448000, 29369155211, 1053204332544, 41646891006877, 1800306963331072, 84464613778359375, 4274750510822588416, 232146299393990454353, 13465725621588464173056, 830921722002492358973203
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, (n+1)^(n-2*k-1)*binomial(n-2*k, k)/(n-2*k)!);

Formula

E.g.f.: (1/x) * Series_Reversion( x*exp(-x * (1 + x^2)) ).
a(n) = n! * Sum_{k=0..floor(n/3)} (n+1)^(n-2*k-1) * binomial(n-2*k,k)/(n-2*k)!.
Showing 1-3 of 3 results.