A376479 Array read by antidiagonals: T(n,k) is the index of prime(k)^n in the numbers with n prime factors, counted with multiplicity.
1, 2, 1, 3, 3, 1, 4, 9, 5, 1, 5, 17, 30, 8, 1, 6, 40, 82, 90, 14, 1, 7, 56, 328, 385, 269, 23, 1, 8, 90, 551, 2556, 1688, 788, 39, 1, 9, 114, 1243, 5138, 18452, 7089, 2249, 64, 1, 10, 164, 1763, 15590, 44329, 126096, 28893, 6340, 103, 1, 11, 253, 3112, 24646, 179313, 361249, 827901, 115180, 17526
Offset: 1
Examples
T(2,3) = 9 because the third prime is 5 and 5^2 = 25 is the 9th semiprime.
Crossrefs
Programs
-
Maple
T:= Matrix(12,12): with(priqueue); for m from 1 to 12 do initialize(pq); insert([-2^m, [2$m]],pq); k:= 0: for count from 1 do t:= extract(pq); w:= t[2]; if nops(convert(w,set))=1 then k:= k+1; T[m,k]:= count; if m+k = 13 then break fi; fi; p:= nextprime(w[-1]); for i from m to 1 by -1 while w[i] = w[m] do insert([t[1]*(p/w[-1])^(m+1-i),[op(w[1..i-1]),p$(m+1-i)]],pq); od od od: seq(seq(T[i,s-i],i=1..s-1),s=2..13)
Comments