cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376485 Carmichael numbers ordered by largest prime factor, then by size.

Original entry on oeis.org

561, 1105, 1729, 2465, 2821, 75361, 63973, 1050985, 6601, 41041, 29341, 172081, 552721, 852841, 10877581, 1256855041, 8911, 340561, 15182481601, 72720130561, 10585, 15841, 126217, 825265, 2433601, 496050841, 672389641, 5394826801, 24465723528961, 1074363265, 24172484701, 62745, 2806205689, 22541365441, 46657, 2113921, 6436473121, 6557296321, 13402361281, 26242929505, 65320532641, 143873352001, 105083995864811041
Offset: 1

Views

Author

Keywords

Examples

			17: 561, 1105;
19: 1729;
23:
29: 2465;
31: 2821, 75361;
37: 63973, 1050985;
41: 6601, 41041;
43:
47:
53:
59:
61: 29341, 172081, 552721, 852841, 10877581, 1256855041;
67: 8911, 340561, 15182481601;
71: 72720130561;
73: 10585, 15841, 126217, 825265, 2433601, 496050841, 672389641, 5394826801, 24465723528961;
79: 1074363265, 24172484701
83:
89: 62745, 2806205689, 22541365441;
97: 46657, 2113921, 6436473121, 6557296321, 13402361281, 26242929505, 65320532641, 143873352001, 105083995864811041
101: 101101, 252601, 2100901, 9494101, 6820479601, 109038862801, 102967089120001
		

Crossrefs

Cf. A002997, A081702, A283715 (row lengths).

Programs

  • PARI
    \\ This program is inefficient and functions as proof-of-concept only.
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    car(n)=n%2 && !isprime(n) && Korselt(n) && n>1
    row(k)=my(p=prime(k)); fordiv(prod(i=2,k-1,prime(i)),n,if(car(p*n), print1(p*n,", ")))
    
  • Python
    from itertools import islice, combinations
    from math import prod
    from sympy import nextprime
    def A376485_gen(): # generator of terms
        plist, p = [3, 5], 7
        while True:
            clist = []
            for l in range(2,len(plist)+1):
                for q in combinations(plist,l):
                    k = prod(q)*p-1
                    if not (k%(p-1) or any(k%(r-1) for r in q)):
                        clist.append(k+1)
            yield from sorted(clist)
            plist.append(p)
            p = nextprime(p)
    A376485_list = list(islice(A376485_gen(),43)) # Chai Wah Wu, Sep 25 2024