A376485 Carmichael numbers ordered by largest prime factor, then by size.
561, 1105, 1729, 2465, 2821, 75361, 63973, 1050985, 6601, 41041, 29341, 172081, 552721, 852841, 10877581, 1256855041, 8911, 340561, 15182481601, 72720130561, 10585, 15841, 126217, 825265, 2433601, 496050841, 672389641, 5394826801, 24465723528961, 1074363265, 24172484701, 62745, 2806205689, 22541365441, 46657, 2113921, 6436473121, 6557296321, 13402361281, 26242929505, 65320532641, 143873352001, 105083995864811041
Offset: 1
Examples
17: 561, 1105; 19: 1729; 23: 29: 2465; 31: 2821, 75361; 37: 63973, 1050985; 41: 6601, 41041; 43: 47: 53: 59: 61: 29341, 172081, 552721, 852841, 10877581, 1256855041; 67: 8911, 340561, 15182481601; 71: 72720130561; 73: 10585, 15841, 126217, 825265, 2433601, 496050841, 672389641, 5394826801, 24465723528961; 79: 1074363265, 24172484701 83: 89: 62745, 2806205689, 22541365441; 97: 46657, 2113921, 6436473121, 6557296321, 13402361281, 26242929505, 65320532641, 143873352001, 105083995864811041 101: 101101, 252601, 2100901, 9494101, 6820479601, 109038862801, 102967089120001
Programs
-
PARI
\\ This program is inefficient and functions as proof-of-concept only. Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1 car(n)=n%2 && !isprime(n) && Korselt(n) && n>1 row(k)=my(p=prime(k)); fordiv(prod(i=2,k-1,prime(i)),n,if(car(p*n), print1(p*n,", ")))
-
Python
from itertools import islice, combinations from math import prod from sympy import nextprime def A376485_gen(): # generator of terms plist, p = [3, 5], 7 while True: clist = [] for l in range(2,len(plist)+1): for q in combinations(plist,l): k = prod(q)*p-1 if not (k%(p-1) or any(k%(r-1) for r in q)): clist.append(k+1) yield from sorted(clist) plist.append(p) p = nextprime(p) A376485_list = list(islice(A376485_gen(),43)) # Chai Wah Wu, Sep 25 2024