A376570 Table T(n, k), n > 1, k = 1..n-1, read by rows; T(n, k) is the least m such that the points (m, prime(m)), (k, prime(k)) and (n, prime(n)) are aligned (where prime(k) denotes the k-th prime number).
1, 1, 2, 1, 2, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 3, 6, 1, 2, 3, 4, 2, 4, 7, 1, 2, 3, 4, 3, 6, 3, 8, 1, 2, 3, 4, 5, 6, 6, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 8, 10, 1, 2, 3, 4, 5, 6, 6, 8, 9, 6, 11, 1, 2, 3, 4, 5, 6, 6, 8, 9, 6, 11, 6, 1, 2, 3, 4, 5, 6, 7, 8, 8, 10, 8, 12, 13
Offset: 2
Examples
Triangle T(n, k) begins: 1; 1, 2; 1, 2, 2; 1, 2, 3, 4; 1, 2, 3, 4, 5; 1, 2, 3, 4, 3, 6; 1, 2, 3, 4, 2, 4, 7; 1, 2, 3, 4, 3, 6, 3, 8; 1, 2, 3, 4, 5, 6, 6, 8, 9; 1, 2, 3, 4, 5, 6, 7, 8, 8, 10; 1, 2, 3, 4, 5, 6, 6, 8, 9, 6, 11; 1, 2, 3, 4, 5, 6, 6, 8, 9, 6, 11, 6; ...
Links
- Rémy Sigrist, Table of n, a(n) for n = 2..10012 (rows for n = 2..142 flattened)
- Rémy Sigrist, Scatterplot of (n, k) such that T(n, k) = k and n <= 1000
Programs
-
PARI
T(n,k) = { my (x0 = k, y0 = prime(x0), x1 = n, y1 = prime(x1), x2 = 0); forprime (y2 = 2, oo, x2++; if (x0 * (y1 - y2) + x1 * (y2 - y0) + x2 * (y0 - y1)==0, return (x2););); }
Formula
T(n, k) <= k.
T(n, 1) = 1.