cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A376569 Table T(n, k), n > 1, k = 1..n-1, read by rows; T(n, k) is the number of points of the form (m, prime(m)) aligned with the points (k, prime(k)) and (n, prime(n)) (where prime(k) denotes the k-th prime number).

Original entry on oeis.org

2, 2, 3, 2, 3, 3, 2, 3, 4, 7, 2, 2, 2, 3, 2, 2, 2, 4, 2, 4, 8, 2, 3, 2, 3, 3, 3, 2, 2, 2, 4, 2, 4, 2, 4, 5, 2, 2, 2, 2, 3, 8, 8, 4, 6, 2, 2, 2, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 2, 2, 8, 8, 2, 2, 8, 6, 2, 2, 2, 2, 2, 8, 8, 3, 3, 8, 5, 8, 2, 2, 2, 2, 2, 2, 2, 5, 5, 2, 5, 2, 2
Offset: 2

Views

Author

Rémy Sigrist, Sep 28 2024

Keywords

Examples

			Table T(n, k) begins:
    2;
    2, 3;
    2, 3, 3;
    2, 3, 4, 7;
    2, 2, 2, 3, 2;
    2, 2, 4, 2, 4, 8;
    2, 3, 2, 3, 3, 3, 2;
    2, 2, 4, 2, 4, 2, 4, 5;
    2, 2, 2, 2, 3, 8, 8, 4, 6;
    2, 2, 2, 2, 2, 2, 2, 5, 5, 2;
    2, 2, 2, 2, 2, 8, 8, 2, 2, 8, 6;
    2, 2, 2, 2, 2, 8, 8, 3, 3, 8, 5, 8;
    ...
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (x0 = k, y0 = prime(x0), x1 = n, y1 = prime(x1), s = (y1-y0)/(x1-x0), maxp = max(60184, exp(max(y0/x0, s) + 1.1)), x2 = 0, v = 0); forprime (y2 = 2, 1+maxp, x2++; if (x0 * (y1 - y2) + x1 * (y2 - y0) + x2 * (y0 - y1)==0, v++;);); return (v); }

Formula

T(n, k) >= 2.

A376570 Table T(n, k), n > 1, k = 1..n-1, read by rows; T(n, k) is the least m such that the points (m, prime(m)), (k, prime(k)) and (n, prime(n)) are aligned (where prime(k) denotes the k-th prime number).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 3, 6, 1, 2, 3, 4, 2, 4, 7, 1, 2, 3, 4, 3, 6, 3, 8, 1, 2, 3, 4, 5, 6, 6, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 8, 10, 1, 2, 3, 4, 5, 6, 6, 8, 9, 6, 11, 1, 2, 3, 4, 5, 6, 6, 8, 9, 6, 11, 6, 1, 2, 3, 4, 5, 6, 7, 8, 8, 10, 8, 12, 13
Offset: 2

Views

Author

Rémy Sigrist, Sep 28 2024

Keywords

Examples

			Triangle T(n, k) begins:
    1;
    1, 2;
    1, 2, 2;
    1, 2, 3, 4;
    1, 2, 3, 4, 5;
    1, 2, 3, 4, 3, 6;
    1, 2, 3, 4, 2, 4, 7;
    1, 2, 3, 4, 3, 6, 3, 8;
    1, 2, 3, 4, 5, 6, 6, 8, 9;
    1, 2, 3, 4, 5, 6, 7, 8, 8, 10;
    1, 2, 3, 4, 5, 6, 6, 8, 9, 6, 11;
    1, 2, 3, 4, 5, 6, 6, 8, 9, 6, 11, 6;
    ...
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (x0 = k, y0 = prime(x0), x1 = n, y1 = prime(x1), x2 = 0); forprime (y2 = 2, oo, x2++; if (x0 * (y1 - y2) + x1 * (y2 - y0) + x2 * (y0 - y1)==0, return (x2););); }

Formula

T(n, k) <= k.
T(n, 1) = 1.
Showing 1-2 of 2 results.