A376569 Table T(n, k), n > 1, k = 1..n-1, read by rows; T(n, k) is the number of points of the form (m, prime(m)) aligned with the points (k, prime(k)) and (n, prime(n)) (where prime(k) denotes the k-th prime number).
2, 2, 3, 2, 3, 3, 2, 3, 4, 7, 2, 2, 2, 3, 2, 2, 2, 4, 2, 4, 8, 2, 3, 2, 3, 3, 3, 2, 2, 2, 4, 2, 4, 2, 4, 5, 2, 2, 2, 2, 3, 8, 8, 4, 6, 2, 2, 2, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 2, 2, 8, 8, 2, 2, 8, 6, 2, 2, 2, 2, 2, 8, 8, 3, 3, 8, 5, 8, 2, 2, 2, 2, 2, 2, 2, 5, 5, 2, 5, 2, 2
Offset: 2
Examples
Table T(n, k) begins: 2; 2, 3; 2, 3, 3; 2, 3, 4, 7; 2, 2, 2, 3, 2; 2, 2, 4, 2, 4, 8; 2, 3, 2, 3, 3, 3, 2; 2, 2, 4, 2, 4, 2, 4, 5; 2, 2, 2, 2, 3, 8, 8, 4, 6; 2, 2, 2, 2, 2, 2, 2, 5, 5, 2; 2, 2, 2, 2, 2, 8, 8, 2, 2, 8, 6; 2, 2, 2, 2, 2, 8, 8, 3, 3, 8, 5, 8; ...
Links
- Rémy Sigrist, Table of n, a(n) for n = 2..10012 (rows for n = 2..142 flattened)
Programs
-
PARI
T(n,k) = { my (x0 = k, y0 = prime(x0), x1 = n, y1 = prime(x1), s = (y1-y0)/(x1-x0), maxp = max(60184, exp(max(y0/x0, s) + 1.1)), x2 = 0, v = 0); forprime (y2 = 2, 1+maxp, x2++; if (x0 * (y1 - y2) + x1 * (y2 - y0) + x2 * (y0 - y1)==0, v++;);); return (v); }
Formula
T(n, k) >= 2.